

Tuesday, 5 April 2011

Unit 441 Skyline Apartments 30 Macrossan Street Brisbane Qld 4000 Australia GPO Box 3249 Brisbane Qld 4001 Australia Tel +61 7 3333 2722 Email: enquiries@auzex.com www.auzex.com

Bullabulling Gold Project – Resource Drilling and Work Update

Highlights

- Auzex continues to develop Bullabulling despite distractions of a hostile and unsolicited take-over attempt from GGG Resources plc.
- 105 new drill holes totalling 15,575m completed during February and March 2011, bringing overall drilling total to 30,854m in 227 drill holes since commencement.
- Results from the drilling program continue to confirm and expand the current resource model and include new high grade intersections.
- Approximately 22% of reported mineralised sections are outside the current resource model.
- Highlights include 1m at 23.80 g/t Au from 34m, 3m at 9.33 g/t Au from 158m, 2m at 8.41 g/t Au from 94m, 1m at 11.75 g/t Au from 128m, 1m at 12.05 g/t Au from 62m, 3m at 6.77 g/t Au from 155m, 7m at 24.46 g/t Au from 36m, including 1m at 164 g/t Au from 38m, 5m at 7.59 g/t Au from 78m, 6m at 7.35 g/t Au from 90m and 2m at 13.29 g/t Au from 29m.
- A Program of Works has been submitted by Auzex as mine manager to the WA Department of Mines to allow a total of 194,000m to be drilled in the coming year or as required.
- The Board continues to unanimously recommend shareholders TAKE NO ACTION and DO NOT ACCEPT the proposed take over offer from GGG Resources plc.

Resource drilling program update

The Bullabulling Gold Project RC resource drilling program was extended through February and March to expand the drilling program by 37,500m to infill new zones of mineralisation identified. The additional work was proposed by Auzex and approved by its joint venture partner, GGG Resources plc ("GGG") at the January 2011 Joint Venture meeting. Activities continued to focus on infill resource drilling, reviewing QAQC results, review of drill spacing requirements to upgrade the new resource estimate, preliminary resource modelling and metallurgical test work. Detailed drill planning has also been undertaken to expand the resource base and more importantly convert the large amount of Inferred resources to Indicated resources. Results from the drilling to date continue to increase our confidence in the quality of the historic data and accuracy of the current resource estimate. The majority of holes continue to return intersections similar to those predicted by the resource model and about a quarter are intersecting new mineralisation not currently taken account of by the resource model.

Objective of current resources drilling program - to establish maiden reserve

A key aim of the current resource drilling program is to compare results from historic drilling with the aim of improving the confidence in the historical assays to allow the current Inferred resource to be reclassified to Indicated and possibly Measured categories, and in turn enable initial JORC compliant reserves to be established for the project. The current reported JORC compliant mineral resource is 41,517,000 tonnes at 1.48 g/t Au for 1.98 million ounces of gold at a 0.7 g/t Au cut off to an assumed economic mining depth of 315m RL, approximately 120m below surface.

Mineral Resource estimate	Cut Off (g/t Au)	Class	Tonnes	Gold grade g/t	Contained Ounces
August 2010	0.7	Inferred	41,517,000	1.5	1,982,000

Bullabulling Mineral Resource (August 2010)

Note: The resource is quoted for blocks with a grade of greater than 0.7 g/t and above the 315 RL which approximates to 120m depth below surface. Differences may occur due to rounding.

Drilling work

Total drilling production to date is 30,854m from 227 holes since the program commenced, including pre-collars for the metallurgical holes. Since the last announcement where results were reported to 1 February 2011, there has been 15,575m drilled in 105 holes to 1 April 2011 (Table 1). Drilling during the period focussed on in-fill drilling new mineralisation found at Titan and Bacchus East, and testing of historical mineralisation south and north of Phoenix, Bacchus South and reconnaissance drilling at Bonecrusher, which is located at the northern end of the Bullabulling mineralised trend (Figure 1).

Drilling results

Drilling results continue to improve the confidence in the current resource model and consequently the historic data that were used to estimate the resource model. Importantly a number of new zones of mineralisation continue to be intersected outside the resource model both below and along strike from known mineralisation (Table 2). New intersections not reported previously include 1m at 23.80 g/t Au from 34m in BJ0118, 47m at 0.74 g/t Au from 39m in BJ0120, 7m at 1.68 g/t Au from 73m in BJ0120, 9m at 1.67 g/t Au from 0m in BJ0134, 3m at 9.33 g/t Au from 158m in BJ0136, 34m at 0.65 g/t Au from 138m in BJ0143, 6m at 1.52 g/t Au from 108m in BJ0144, 3m at 3.57 g/t Au from 77m in BJ0153, 2m at 8.41 g/t Au from 94m in BJ0154, 1m at 11.75 g/t Au from 128m in BJ0159, 1m at 12.05 g/t Au from 62m in BJ0160, 4m at 2.98 g/t Au from 172m in BJ0160, 1m at 8.02 g/t Au from 134m in BJ0164, 2m at 7.62 g/t Au from 47m in BJ0165, 5m at 1.79 g/t Au from 130m in BJ0165, 4m at 2.97 g/t Au from 146m in BJ0166, 3m at 6.77 g/t Au from 155m in BJ0172, 2m at 5.03 g/t Au from 115m in BJ0176, 1m at 8.31 g/t Au from 44m in BJ0179, 7m at 24.46 g/t Au from 36m, including 1m at 164 g/t Au from 38 m, in BJ0180, 1m at 8.10 a/t Au from 76m in BJ0180. 1m at 7.08 g/t Au from 47m in BJ0184. 2m at 8.69 g/t Au from 80m in BJ0184, 4m at 1.81 g/t Au from 69m in BJ0187, 6m at 2.47 g/t Au from 72m in BJ0189, 5m at 1.90 g/t Au from 44m in BJ0190, 2m at 5.54 g/t Au from 75m in BJ0201, 3m at 3.80 g/t Au from 90m in BJ0201, 3m at 6.12 g/t Au from 98m in BJ0202, 3m at 12.42 g/t Au from 106m in BJ0203, 6m at 1.67 g/t Au from 113m in BJ0203, 7m at 2.08 g/t Au from 76m in BJ0206, 5m at 7.59 g/t Au from 78m in BJ0207, 6m at 7.35 g/t Au from 90m in BJ0208, 2m at 13.29 g/t Au from 29m in BJ0210 and 3m at 3.17 g/t Au from 112m in BJ0214.

All the new holes drilled have intersected mineralisation that is similar in grade and widths to the historic drilling (Table 2). Of particular importance were the results from Bonecrusher which confirmed similar mineralisation 5km along strike from the main resource area. Bonecrusher has the potential to add to the resource base of the project as the footwall lodes found to the south have not been tested in this area. As in the previously announced holes, there are 4 intersections per hole relating to the multiple stacked lodes defined by the structural mapping. Approximately 66% of these intersections returned similar or better grades or widths of mineralisation to the resource model and 34% are worse or did not intersect mineralisation predicted by the resource model. Approximately 23% of the reported intersections have returned gold mineralisation outside the current resource model, as previously reported to 315 RL or approximately 120m below surface, which will add to the current resource base of the project.

An example of the reconciliation of the QAQC drilling with the current resource estimate is shown on the attached section (Figure 2). All the drill holes on the section were drilled after the resource model and intersected mineralisation as predicted by the resource model in drill holes BJ0203, BJ0202, BJ0180 and BJ0179. The mineralisation in BJ0201 and BJ0177 is of a similar width and grade as predicted by the model but slightly offset. The high grade intersection in BJ0180 of 9m at 9.49 g/t Au including 1m at 164 g/t Au is a new intersection not predicted by the model.

Auzex proposed drilling program

A total of 194,158m of new drilling has been planned from 1,210 drill holes to an average depth of 160m to follow up on the QAQC drilling (Figure 3). This drilling will infill resources to the north, south and at depth, and will also include exploration drilling to define the footwall and hanging-wall contacts of the mineralised trend. Exploration drilling is also planned at depth to test for repetitions of the stacked lodes at depth that may have better continuity of high grade mineralisation.

The Joint Venture committee will be required to sign off on the proposed further drilling program.

Resource Estimation

The geological consultants continued to work on the new resource and reserve estimate and have been continuously reviewing drilling results as they become available in relation to QAQC and drill spacing requirements. A review of the standards, blanks and duplicate samples to date has also been completed with no issues identified. Preliminary resource estimation has started to finalise the modelling techniques and geostatistical parameters to be used in the resource estimate upgrade. Also detailed process, mining and administration costs are being compiled in preparation for optimisation studies that will be carried out on the upgraded resource estimate to establish a maiden reserve for the project.

Metallurgy Test Work

Auzex's consultant metallurgical engineers are currently reviewing the new metallurgical comminution, recovery and variability testwork data and have started modelling potential processing and plant capital costs, assuming a base case plant capacity of 5.0 mtpa. Preliminary crushing, mill and plant design work will also be carried out. This information will then be used to optimise plant throughput, and define operating and capital costs for the planned reserve estimation.

Future Work Plan

Work is continuing as planned with the following work expected to be completed in the coming months:

- Sign off on processing costs
- Finalise preliminary engineering design
- Receipt of all assay results from the resource drilling
- Development of a preliminary resource estimate
- Sign off on capital costs
- Resource estimation
- Approval of Program of Works for 194,000m of drilling by end of April
- Optimisation and reserve estimation
- Start of next phase of drilling either exploration or infill drilling driven by the results from the optimisation studies
- Appoint project manager and preparation of BFS

Commentary on drilling results and progress

Commenting on the drilling results and progress generally, Auzex Managing Director John Lawton said: "The results continue to confirm a large bulk tonnage low grade deposit with high grade sections. My team is doing a fantastic job in developing Bullabulling at pace and has developed a fast track program for the remainder of the year.

We note that, despite its loud criticism of Auzex, GGG's Third Supplementary Prospectus released on 1 April 2011 contained no new ideas on how to progress the Project and we now await its Bidder's Statement for any constructive suggestions that it might contain. In the meantime, we will continue our program at Bullabulling despite the distractions presented by the unsolicited and hostile proposed takeover offer by GGG Resources."

GGG proposed take-over of Auzex

The Board continues to unanimously recommend that shareholders **TAKE NO ACTION** and **DO NOT ACCEPT** the proposed offer.

The Board remains confident that the only solution for both Auzex and GGG shareholders is an Australian domiciled and ASX listed entity driven by the same Board and management team that identified Bullabulling and developed it into the potential world class asset that it is today. The Board and management team have significant experience in identifying, developing and operating gold mines in the Australasian region and is much better placed to continue the excellent work achieved to date at Bullabulling. As outlined in Figure 3 we have a well designed and technically sound development strategy for the development of Bullabulling which is far superior to any alternative strategy that GGG is proposing.

For further information please check our website (<u>www.auzex.com</u>) or contact John Lawton (Managing Director) or Greg Partington (Operations Director) on +617 3333 2722 and +6144800987 respectively.

Bullabulling Overview

The Bullabulling Gold project (Bullabulling) is a large tonnage, low grade deposit with high grade shoots, associated with the regional Bullabulling shear zone which extends over tens of kilometres. The mineralised structure is 500m wide, consisting of multiple west dipping low grade stacked zones with narrower higher grade gold mineralisation. Bullabulling is located in Coolgardie approximately 65km south-west of Kalgoorlie, Western Australia. Bullabulling was previously mined by Resolute for 431k oz Au in the 90's. The current program focuses on approximately 2.3km of the 6km portion known as the Bullabulling Trend where previous operations were concentrated. The focus for the Bullabulling joint venture with GGG Resources plc is to establish an initial reserve exceeding one million ounces gold to commence production in 2013.

Competent Person Statement

The information in this report that relates to Exploration Results, Mineral Resources and Ore Reserves is based on information compiled by John Lawton who is a full-time employee of the Company and Member of The Australasian Institute of Mining and Metallurgy. He has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". The latest August 2010 Mineral Resource estimate was completed under the overall supervision and direction of Steven Hodgson, MAIG, of CSA Global who is a Competent Person as defined by the Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code 2004 Edition). John Lawton and Steven Hodgson consent to the information in the form and context in which it appears.

Figure 1. Drill plan showing the location of QAQC and infill drilling in the main resource areas and holes targeting the high grade mineralisation in the Bacchus Deeps area. Red filled drill collar symbols are completed holes.

Figure 2. Drill cross section at Bacchus North showing results in drilling carried out after the resource estimate, which is shown as coloured blocks.

Figure 3. Location of 194,000m of planned drilling at Bullabulling proposed and planned by Auzex in relation to completed resource infill drill holes.

Hole	Easting	Northing	RL	Dip	AZ	Length	Date	Comments
BJ0116	299840.4	6570974.42	434.52	-60	90	133	1/02/2011	Mineralised
BJ0117	299862.2	6571074.17	434.24	-60	90	151	2/02/2011	Mineralised
BJ0118	299791	6570873.37	435.07	-60	90	259	5/02/2011	Mineralised
BJ0119	299846.9	6570673.94	431.34	-60	90	157	6/02/2011	Mineralised
BJ0120	299863	6570575.07	437.05	-60	90	223	8/02/2011	Mineralised
BJ0126	299697.4	6566273.47	427.11	-60	90	151	4/02/2011	Mineralised
BJ0130	299705.2	6566080.64	425.89	-60	90	151	1/02/2011	Mineralised
BJ0131	299785.8	6565680.09	424.07	-60	90	91	1/02/2011	Mineralised
BJ0132	299751.3	6565679.72	423.92	-60	90	125	2/02/2011	Mineralised
BJ0133	299673.9	6565677.55	424.01	-60	90	151	2/02/2011	Mineralised
BJ0134	299473.4	6566177.26	372.05	-60	90	56	5/02/2011	Mineralised
BJ0135	299411.3	6566171.89	366.36	-60	90	138	6/02/2011	Mineralised
BJ0136	299382.8	6566171.74	366.12	-60	90	168	14/02/2011	Mineralised
BJ0137	299429.1	6566125.58	373.54	-70	90	132	14/02/2011	Mineralised
BJ0138	299425.3	6566020.95	371.94	-60	90	169	11/02/2011	Mineralised
BJ0139	299480.4	6565972.92	365.1	-60	90	102	11/02/2011	Mineralised
BJ0140	299433.6	6565975.3	370.92	-60	90	130	5/02/2011	Mineralised
BJ0141	299862.6	6570474.88	437.97	-60	90	199	10/02/2011	Mineralised
BJ0142	299803.3	6570975.22	434.3	-60	90	163	10/02/2011	Mineralised
BJ0143	299768.4	6570774.32	435.39	-60	92	206	13/02/2011	Mineralised
BJ0144	299822.8	6570575.82	437.1	-60	92	175	14/02/2011	Mineralised
BJ0145	299791.6	6566980.49	432.16	-60	92	133	15/02/2011	Mineralised
BJ0146	299771.9	6566980.91	432.04	-60	91.5	139	16/02/2011	Mineralised
BJ0147	299910.5	6567025.61	433.62	-60	90	103	17/02/2011	Mineralised
BJ0148	299889.8	6567025.42	433.73	-60	90	109	17/02/2011	Mineralised
BJ0149	299870.4	6567025.68	433.67	-60	90	121	18/02/2011	Mineralised
BJ0150	299851.2	6567025.55	433.73	-60	90	103	19/02/2011	Mineralised
BJ0151	299831.4	6567025.81	433.53	-60	90	103	19/02/2011	Mineralised
BJ0152	299811.8	6567025.9	433.2	-60	90	103	19/02/2011	Mineralised
BJ0153	299891	6566931.44	431.63	-60	90	109	20/02/2011	Mineralised
BJ0154	299758.4	6567048.78	432.9	-60	90	151	8/02/2011	Mineralised
BJ0155	299736.5	6567048.75	432.66	-60	90	163	9/02/2011	Mineralised
BJ0156	299715.4	6567048.16	432.23	-60	90	169	10/02/2011	Mineralised
BJ0157	299691.4	6567047.98	431.9	-60	90	169	21/02/2011	Mineralised
BJ0158	299670	6567047.6	431.57	-60	90	181	22/02/2011	Mineralised
BJ0159	299647.7	6567046.92	431.37	-60	90	193	23/02/2011	Mineralised
BJ0160	299622.6	6567046.78	431.36	-60	90	199	24/02/2011	Mineralised
BJ0161	299413.8	6565974.67	371.54	-60	90	145	8/02/2011	Mineralised
BJ0162	299433	6565918.63	369.34	-60	90	114	13/02/2011	Mineralised
BJ0163	299452	6565873.36	365.05	-60	90	114	12/02/2011	Mineralised
BJ0164	299431.8	6565874.2	366.2	-60	90	150	13/02/2011	Mineralised

Table 1: Bullabulling Collar data for RC drilling completed between 01 February and 01 April 2011

Hole	Easting	Northing	RL	Dip	AZ	Length	Date	Comments
BJ0165	299641.2	6566480.38	427.96	-60	90	174	16/02/2011	Mineralised
BJ0166	299618.3	6566477.98	427.88	-60	90	192	20/02/2011	Mineralised
BJ0172	299613.3	6566274.43	430.28	-60	90	192	20/02/2011	Mineralised
BJ0173	299919.5	6566725.83	430.81	-60	90	84	20/02/2011	Mineralised
BJ0174	299881.5	6566725.75	430.35	-60	90	100	20/02/2011	Mineralised
BJ0175	299841.7	6566726	430.13	-60	90	120	22/01/2011	Mineralised
BJ0176	299802.1	6566726.45	430.24	-60	90	138	22/02/2011	Mineralised
BJ0177	299949.3	6566819.23	431.26	-60	90	84	23/02/2011	Mineralised
BJ0178	299928.1	6566818.7	431.17	-60	90	84	23/02/2011	Mineralised
BJ0179	299908.9	6566817.86	430.88	-60	90	96	23/02/2011	Mineralised
BJ0180	299883.2	6566818.66	430.94	-60	90	108	24/02/2011	Mineralised
BJ0181	299680.2	6567125.71	432.9	-60	90	139	25/02/2011	Mineralised
BJ0182	299634.2	6567124.7	432.1	-60	90	163	27/02/2011	Mineralised
BJ0183	299720.2	6567204.22	434.36	-60	90	109	27/02/2011	Mineralised
BJ0184	299676	6567203.36	433.57	-60	90	139	28/02/2011	Mineralised
BJ0185	299638	6567202.5	433.08	-60	90	163	1/03/2011	Mineralised
BJ0186	299595.1	6567201.41	433.39	-60	90	187	1/03/2011	Mineralised
BJ0187	299760.6	6567622.85	441.45	-60	90	103	3/03/2011	Mineralised
BJ0188	299724.3	6567622.1	440.26	-60	90	121	3/03/2011	Mineralised
BJ0189	299681.3	6567621.29	441.17	-60	90	139	4/03/2011	Mineralised
BJ0190	299641.5	6567621.4	440.14	-60	90	163	5/03/2011	Mineralised
BJ0191	299603.1	6567620.43	438.57	-60	90	181	6/03/2011	Mineralised
BJ0192	299560.3	6567576.82	437.22	-60	90	199	7/03/2011	Pending
BJ0193	299490	6567579.87	436.44	-60	90	181	9/03/2011	Pending
BJ0194	299460.2	6567271.64	432.89	-60	90	222	12/03/2011	Pending
BJ0195	299510.7	6567478	437	-60	90	211	12/03/2011	Pending
BJ0196	299468.7	6567477.18	435.42	-60	90	175	13/03/2011	Pending
BJ0197	299583.8	6567377.01	434.26	-60	90	187	14/03/2011	Pending
BJ0198	299543	6567377	438	-60	90	198	20/03/2011	Pending
BJ0199	299537.8	6567272.8	432.96	-60	90	222	13/03/2011	Pending
BJ0200	299861.8	6566818.37	430.79	-60	90	105	24/02/2011	Mineralised
BJ0201	299840.1	6566818.47	430.76	-60	90	162	26/02/2011	Mineralised
BJ0202	299816.7	6566818.25	430.57	-60	90	138	26/02/2011	Mineralised
BJ0203	299795.4	6566817.89	430.51	-60	90	144	27/02/2011	Mineralised
BJ0205	299906	6566887.67	431.46	-60	90	109	27/02/2011	Mineralised
BJ0206	299884.3	6566887.72	431.35	-60	90	114	28/02/2011	Mineralised
BJ0207	299862.1	6566888	431.27	-60	90	132	28/02/2011	Mineralised
BJ0208	299841.3	6566888.17	431.19	-60	90	138	1/03/2011	Mineralised
BJ0209	299819	6566888.23	431.25	-60	90	138	1/03/2011	Mineralised
BJ0210	299795.8	6566888.5	431.16	-60	90	144	2/03/2011	Mineralised
BJ0211	299775.5	6566887.67	431.12	-60	90	151	3/03/2011	Mineralised
BJ0212	299753.9	6566888.95	431.21	-60	90	162	4/03/2011	Mineralised

Hole	Easting	Northing	RL	Dip	AZ	Length	Date	Comments
BJ0213	299731.5	6566889.27	431.31	-60	90	133	5/03/2011	Mineralised
BJ0214	299710.2	6566889.53	430.98	-60	90	152	6/03/2011	Mineralised
BJ0215	299825.4	6566929.31	431.7	-60	90	132	7/03/2011	Mineralised
BJ0216	299577.7	6567087.59	431.66	-60	90	222	8/03/2011	Pending
BJ0217	299493.9	6567073.7	432.84	-60	90	204	10/03/2011	Pending
BJ0218	299415.3	6567073.3	432.99	-60	90	222	11/03/2011	Pending
BJ0219	299375	6567265	434	-60	90	156	14/03/2011	Pending
BJ0220	299360	6566175	365	-60	90	156	29/03/2011	Pending
BJ0221	299410	6565925	369	-60	90	144	30/03/2011	Pending
BJ0223	299914	6566575	432	-60	90	72	20/03/2011	Pending
BJ0224	299874	6566575	432	-60	90	96	21/03/2011	Pending
BJ0225	299834	6566575	432	-60	90	120	21/03/2011	Pending
BJ0226	299794	6566575	432	-60	90	150	22/03/2011	Pending
BJ0227	299764	6566575	432	-60	90	162	22/03/2011	Pending
BJ0228	299864	6566475	428	-60	90	102	23/03/2011	Pending
BJ0229	299824	6566475	428	-60	90	222	24/03/2011	Pending
BJ0230	299822	6566375	429	-60	90	90	25/03/2011	Pending
BJ0231	299782	6566375	429	-60	90	108	26/03/2011	Pending
BJ0232	299742	6566375	429	-60	90	126	26/03/2011	Pending
BJ0233	299702	6566375	429	-60	90	150	27/03/2011	Pending
BJ0234	299662	6566375	429	-60	90	186	27/03/2011	Pending
BJ0235	299446	6567580	436	-60	90	258	31/03/2011	Pending

Table 2: Intersection summary	v from drill assave	s received between 1	February	v 2011 and 01	April 2011
	,				

Hole	From	То	Width	Au g/t	Includes
BJ0116	106	108	2	0.42	
BJ0117	85	87	2	0.44	
BJ0117	92	94	2	0.37	
BJ0117	103	108	5	0.77	
BJ0118	5	7	2	0.73	
BJ0118	34	35	1	23.80	
BJ0118	140	143	3	0.57	
BJ0118	146	151	5	0.39	
BJ0118	161	163	2	0.59	
BJ0118	169	171	2	0.59	
BJ0119	39	42	3	0.90	
BJ0119	50	52	2	0.44	
BJ0119	57	59	2	0.58	
BJ0119	64	68	4	0.68	
BJ0119	77	92	15	0.54	
BJ0119	98	102	4	0.58	

Hole	From	То	Width	Au g/t	Includes
BJ0119	122	139	17	0.57	
BJ0119	147	157	10	1.14	
BJ0120	39	86	47	0.74	7m at 1.68 g/t Au from 73
BJ0120	101	103	2	0.39	
BJ0120	114	122	8	0.47	
BJ0120	146	150	4	1.86	
BJ0120	156	162	6	0.82	
BJ0120	203	209	6	0.31	
BJ0130	38	42	4	0.44	
BJ0130	52	57	5	0.61	
BJ0130	63	66	3	0.35	
BJ0130	72	76	4	0.37	
BJ0131	28	40	12	0.60	
BJ0131	53	55	2	0.69	
BJ0132	28	31	3	0.71	
BJ0132	43	46	3	0.34	
BJ0132	69	71	2	1.04	
BJ0133	36	42	6	0.49	
BJ0133	95	98	3	0.45	
BJ0134	0	9	9	1.67	
BJ0134	18	20	2	0.86	
BJ0135	5	7	2	0.79	
BJ0135	20	22	2	0.36	
BJ0135	32	35	3	0.41	
BJ0135	122	125	3	0.36	
BJ0136	3	5	2	0.42	
BJ0136	14	21	7	0.70	
BJ0136	42	55	13	0.43	
BJ0136	158	161	3	9.33	
BJ0137	19	22	3	0.95	
BJ0137	29	34	5	1.51	
BJ0137	47	52	5	0.50	
BJ0137	59	61	2	2.14	
BJ0137	64	66	2	0.56	
BJ0137	82	88	6	0.40	
BJ0138	124	126	2	0.63	
BJ0138	140	142	2	0.60	
BJ0139	30	40	10	0.59	
BJ0139	48	52	4	0.65	
BJ0140	0	14	14	0.77	
BJ0140	19	23	4	0.37	
BJ0140	33	46	13	0.75	

Hole	From	То	Width	Au g/t	Includes
BJ0140	59	62	3	0.40	
BJ0141	47	61	14	0.78	
BJ0141	65	84	19	0.63	
BJ0141	99	101	2	0.55	
BJ0141	109	114	5	1.00	
BJ0141	150	152	2	1.65	
BJ0141	154	158	4	0.42	
BJ0142	6	8	2	0.43	
BJ0142	119	121	2	0.58	
BJ0143	94	96	2	0.48	
BJ0143	138	172	34	0.65	
BJ0143	180	183	3	0.47	
BJ0143	192	196	4	0.85	
BJ0144	108	114	6	1.52	
BJ0144	151	156	5	0.50	
BJ0145	31	35	4	0.37	
BJ0145	55	58	3	0.31	
BJ0145	89	93	4	1.18	
BJ0145	110	112	2	1.31	
BJ0145	122	124	2	0.41	
BJ0146	35	40	5	0.53	
BJ0146	43	48	5	0.36	
BJ0146	96	102	6	0.59	
BJ0146	120	122	2	3.01	
BJ0147	40	42	2	1.09	
BJ0147	47	50	3	0.54	
BJ0147	71	74	3	0.51	
BJ0147	86	93	7	0.87	
BJ0148	39	52	13	0.67	
BJ0148	82	84	2	2.63	
BJ0148	91	106	15	0.88	
BJ0149	35	39	4	0.57	
BJ0149	59	61	2	0.38	
BJ0149	109	112	3	1.06	
BJ0150	32	38	6	0.93	
BJ0150	47	49	2	0.68	
BJ0150	53	58	5	0.42	
BJ0150	66	69	3	1.22	
BJ0150	79	81	2	0.52	
BJ0151	27	31	4	0.84	
BJ0151	55	57	2	0.36	
BJ0151	60	63	3	1.80	

Hole	From	То	Width	Au g/t	Includes
BJ0152	41	43	2	0.51	
BJ0152	50	55	5	0.35	
BJ0152	78	85	7	0.80	
BJ0152	99	101	2	0.81	
BJ0153	51	62	11	0.48	
BJ0153	77	85	8	1.60	3m at 3.57 g/t Au from 77
BJ0154	59	65	6	0.30	
BJ0154	71	81	10	0.47	
BJ0154	94	96	2	8.41	
BJ0154	111	119	8	1.13	
BJ0154	125	147	22	0.41	
BJ0155	62	67	5	0.67	
BJ0155	79	83	4	0.70	
BJ0155	92	94	2	0.56	
BJ0155	115	123	8	1.00	
BJ0155	126	129	3	0.44	
BJ0156	103	105	2	0.36	
BJ0156	125	132	7	0.64	
BJ0156	137	140	3	0.37	
BJ0156	156	158	2	0.51	
BJ0157	132	136	4	1.69	
BJ0158	163	165	2	0.50	
BJ0159	69	79	10	0.69	
BJ0159	128	129	1	11.75	
BJ0160	62	67	5	2.55	1m at 12.05 g/t Au from 62
BJ0160	74	82	8	1.01	
BJ0160	128	132	4	1.02	
BJ0160	154	160	6	0.56	
BJ0160	169	176	7	1.97	4m at 2.98 g/t Au from 172
BJ0160	181	184	3	0.78	
BJ0161	4	15	11	0.75	
BJ0161	21	35	14	0.41	
BJ0161	40	46	6	0.81	
BJ0161	53	56	3	0.70	
BJ0161	59	61	2	0.69	
BJ0161	63	65	2	0.50	
BJ0161	69	74	5	0.77	
BJ0161	142	145	3	0.86	
BJ0162	1	15	14	0.83	
BJ0162	23	26	3	0.44	
BJ0162	54	67	13	0.49	
BJ0162	82	86	4	0.91	

Hole	From	То	Width	Au g/t	Includes
BJ0162	91	93	2	0.48	
BJ0163	0	4	4	0.47	
BJ0163	38	40	2	0.63	
BJ0164	12	14	2	1.91	
BJ0164	25	30	5	0.86	
BJ0164	45	47	2	0.47	
BJ0164	79	82	3	0.53	
BJ0164	134	135	1	8.02	
BJ0165	45	54	9	1.93	2m at 7.62 g/t Au from 47
BJ0165	55	60	5	0.38	
BJ0165	77	81	4	0.34	
BJ0165	88	93	5	0.30	
BJ0165	115	117	2	0.53	
BJ0165	120	124	4	0.73	
BJ0165	130	140	10	1.31	5m at 1.79 g/t Au from 130
BJ0166	40	42	2	0.94	
BJ0166	62	66	4	0.34	
BJ0166	85	87	2	0.46	
BJ0166	93	100	7	1.23	
BJ0166	119	123	4	0.59	
BJ0166	135	154	19	1.27	4m at 2.97 g/t Au from 146
BJ0172	68	71	3	0.71	
BJ0172	95	105	10	0.64	
BJ0172	155	158	3	6.77	
BJ0173	42	44	2	0.40	
BJ0173	81	83	2	3.09	
BJ0174	54	57	3	2.39	
BJ0174	88	90	2	0.60	
BJ0176	45	53	8	0.62	
BJ0176	59	64	5	0.35	
BJ0176	72	75	3	0.33	
BJ0176	115	118	3	3.50	2m at 5.03 g/t Au from 115
BJ0177	0	4	4	1.14	
BJ0177	54	59	5	1.07	
BJ0178	39	44	5	0.72	
BJ0179	34	46	12	1.15	1m at 8.31 g/t Au from 44
BJ0179	48	53	5	0.37	
BJ0179	62	78	16	0.53	
BJ0179	87	89	2	0.56	
BJ0180	36	55	19	9.49	1m at 164 g/t Au from 38
					7m at 24.46 g/t Au from 36
BJ0180	60	62	2	0.74	
BJ0180	74	77	3	2.99	1m at 8.10 g/t Au from 76

Hole	From	То	Width	Au g/t	Includes
BJ0180	83	86	3	0.65	
BJ0181	24	28	4	0.48	
BJ0181	50	65	15	0.85	
BJ0181	82	85	3	0.59	
BJ0181	93	98	5	0.59	
BJ0181	108	110	2	0.41	
BJ0181	115	117	2	0.42	
BJ0181	127	129	2	0.80	
BJ0182	58	68	10	0.89	
BJ0182	105	107	2	2.78	
BJ0182	113	118	5	0.60	
BJ0183	32	45	13	1.15	
BJ0183	93	95	2	0.61	
BJ0184	35	37	2	0.46	
BJ0184	38	41	3	0.37	
BJ0184	46	48	2	3.86	1m at 7.08 g/t Au from 47
BJ0184	53	63	10	0.55	
BJ0184	77	82	5	3.70	2m at 8.69 g/t Au from 80
BJ0184	87	90	3	0.39	
BJ0184	93	102	9	1.15	
BJ0184	114	117	3	0.67	
BJ0184	124	126	2	0.38	
BJ0185	63	71	8	0.62	
BJ0185	87	97	10	1.08	
BJ0185	100	106	6	0.50	
BJ0185	129	145	16	0.47	
BJ0186	76	81	5	0.46	
BJ0186	100	102	2	0.51	
BJ0186	148	161	13	0.76	
BJ0187	33	50	17	0.56	
BJ0187	69	73	4	1.81	
BJ0188	28	30	2	0.32	
BJ0188	43	49	6	0.90	
BJ0188	54	72	18	0.74	
BJ0189	23	31	8	0.64	
BJ0189	41	50	9	0.51	
BJ0189	72	78	6	2.47	
BJ0189	79	82	3	2.07	
BJ0189	83	86	3	0.32	
BJ0189	93	98	5	0.54	
BJ0189	109	112	3	0.38	
BJ0190	37	49	12	1.17	5m at 1.90 g/t Au from 44

Hole	From	То	Width	Au g/t	Includes
BJ0190	59	62	3	0.45	
BJ0190	75	79	4	0.88	
BJ0190	93	96	3	1.01	
BJ0190	99	103	4	0.52	
BJ0190	129	132	3	0.54	
BJ0191	45	47	2	0.62	
BJ0191	61	70	9	1.49	
BJ0191	93	95	2	0.86	
BJ0191	115	123	8	0.83	
BJ0200	55	58	3	0.66	
BJ0200	62	72	10	0.38	
BJ0200	86	91	5	0.71	
BJ0201	44	60	16	0.67	
BJ0201	67	80	13	1.64	2m at 5.54 g/t Au from 75
BJ0201	85	104	19	0.93	3m at 3.38 g/t Au from 90
BJ0202	38	41	3	1.08	
BJ0202	63	79	16	0.65	
BJ0202	98	108	10	2.21	3m at 6.12 g/t Au from 98
BJ0203	40	46	6	0.55	
BJ0203	72	74	2	0.37	
BJ0203	76	78	2	0.52	
BJ0203	81	90	9	0.64	
BJ0203	106	109	3	12.42	
BJ0203	113	119	6	1.67	
BJ0205	37	47	10	0.94	
BJ0205	69	74	5	0.75	
BJ0206	38	40	2	1.17	
BJ0206	43	45	2	0.34	
BJ0206	49	56	7	0.60	
BJ0206	70	85	15	1.24	7m at 2.08 g/t Au from 76
BJ0207	31	33	2	0.92	
BJ0207	48	50	2	0.76	
BJ0207	56	64	8	0.69	
BJ0207	78	90	12	3.63	5m at 7.59 g/t Au from 78
BJ0208	37	42	5	1.37	
BJ0208	55	57	2	0.35	
BJ0208	62	68	6	0.46	
BJ0208	89	98	9	5.08	6m at 7.35 g/t Au from 90
BJ0209	23	25	2	0.35	
BJ0209	47	49	2	1.32	
BJ0209	78	83	5	0.66	
BJ0209	94	105	11	1.25	

Hole	From	То	Width	Au g/t	Includes
BJ0210	29	32	3	9.00	2m at 13.29 g/t Au from 29
BJ0210	44	48	4	0.35	
BJ0210	56	58	2	0.39	
BJ0210	66	68	2	0.42	
BJ0210	71	73	2	0.81	
BJ0210	83	92	9	0.42	
BJ0210	102	104	2	0.80	
BJ0211	30	41	11	1.11	
BJ0211	46	48	2	0.39	
BJ0211	62	67	5	0.40	
BJ0211	90	95	5	1.01	
BJ0211	110	115	5	0.31	
BJ0211	123	127	4	1.03	
BJ0213	46	49	3	0.38	
BJ0213	54	60	6	0.84	
BJ0213	83	85	2	0.94	
BJ0213	96	98	2	1.31	
BJ0213	105	111	6	1.08	
BJ0213	116	118	2	0.42	
BJ0213	125	127	2	0.61	
BJ0214	2	5	3	1.00	
BJ0214	44	46	2	0.44	
BJ0214	52	58	6	0.30	
BJ0214	65	67	2	1.74	
BJ0214	112	115	3	3.17	
BJ0214	119	123	4	0.54	
BJ0214	146	149	3	0.39	
BJ0215	32	38	6	0.66	
BJ0215	49	53	4	0.48	
BJ0215	71	78	7	0.52	
BJ0215	89	91	2	1.11	
BJ0215	98	102	4	0.36	