# QUARTERLY REPORT

## **Three Months Ending 31 March 2011**

## Highlights

## Corporate

- Auzex received notice of an unsolicited and conditional all scrip offer from GGG Resources plc ("GGG") on 14 March 2011.
- The Board unanimously recommends that shareholders TAKE NO ACTION and DO NOT ACCEPT the proposed takeover offer from GGG.
- Auzex continues to develop Bullabulling despite the distractions of the hostile take-over offer.

## Exploration

- 105 new drill holes totalling 15,575m have been completed during February and March 2011, bringing the overall drilling total to 30,854m in 227 drill holes since commencement.
- Results from the drilling program continue to confirm and expand the current resource model and include new high grade intersections.
- Approximately 22% of reported mineralised sections are outside the current resource model.
- Highlights include 1m at 23.80 g/t Au from 34m, 3m at 9.33 g/t Au from 158m, 2m at 8.41 g/t Au from 94m, 1m at 11.75 g/t Au from 128m, 1m at 12.05 g/t Au from 62m, 3m at 6.77 g/t Au from 155m, 7m at 24.46 g/t Au from 36m, including 1m at 164 g/t Au from 38m, 5m at 7.59 g/t Au from 78m, 6m at 7.35 g/t Au from 90m and 2m at 13.29 g/t Au from 29m.
- A Program of Works has been submitted by Auzex as mine manager to the West Australian Department of Mines to allow a total of 194,000m to be drilled in the coming year or as required.

Unit 441 Skyline Apartments 30 Macrossan Street Brisbane Qld 4000 Australia GPO Box 3249 Brisbane Qld 4001 Australia Tel +61 7 3333 2722 Email: enquiries@auzex.com www.auzex.com





#### Corporate

Auzex received notice of a hostile, unsolicited and inadequate offer from UK based and AIM listed GGG Resources plc on the 14 March 2011. Your Board intends to reject GGG's takeover and recommend shareholders do the same. The reasons provided by GGG in its Bidder's Statement for the hostile takeover fail to provide both sets of shareholders with any sound reason as to why the ownership of Bullabulling should be moved to the UK and managed by a predominantly part-time Board of Directors with limited operating experience. The GGG Board, in its takeover offer have also failed to provide a detailed strategy for the development of the Australian based Bullabulling other than to drill 75,000m. Auzex continue to provide the day to day operational management of the project preparing all programs and budgets and the direct employment of all consultants and contractors. All milestones due for the project will continue to be delivered by Auzex for so long as the project remains under Auzex's operational management control.

The Auzex team have significant experience in identifying, developing and operating gold mines in the Australasian region and is well placed to continue the excellent work that has been achieved to date at Bullabulling with a well-designed and technically sound evaluation and development strategy for Bullabulling.

The Board remains confident that the preferred solution for both Auzex and GGG shareholders is an Australian domiciled entity driven by the Board and management team that identified Bullabulling and developed it into the potential world class asset that it is today.

The Board continues to unanimously recommend that shareholders TAKE NO ACTION and DO NOT ACCEPT the proposed offer.

A Bullabulling budget covering 2011, which includes the resource work and feasibility study, was completed and signed off by the Joint Venture prior to the takeover offer during the quarter. This budget included an additional 37,600 metres of drilling to progress exploration and to expand the resource at Bullabulling. Auzex subsequently applied for a Program of Works to cover 194,000 metres of drilling to accelerate and expand the drilling program faster than previously approved by the Joint Venture based on the results of the resource drilling program and an increasing understanding of Bullabulling. The Program of Works was developed and submitted by Auzex prior to the takeover offer with approval expected shortly.



There has been a renewed emphasis on project development during the quarter with high level discussions held with a number of parties regarding projects held by Auzex. In addition, a number of new projects are under review for possible acquisition to add to the Company's portfolio of exploration and development projects. Three tenement applications have been submitted for areas currently under moratorium around the Khartoum Tin project area in north Queensland. Two of the areas include historic drilling that contains multiple narrow intersections exceeding 1% tin.

#### Exploration

#### Bullabulling Gold Project Joint Venture, WA (Auzex 50%)

The Bullabulling Gold project (Bullabulling) is a large tonnage, low grade deposit associated with the regional Bullabulling shear zone, which extends over tens of kilometres. The mineralised structure is up to 800m wide, consisting of multiple west dipping low grade stacked zones with narrower higher grade gold mineralisation. Bullabulling is located in the Coolgardie area approximately 65km south-west of Kalgoorlie, Western Australia, and was previously mined by Resolute producing 371k oz. Au in the 1990's. The current program focuses on approximately 2.3km of the 6km portion known as the Bullabulling Trend where previous operations were concentrated. The focus for the Bullabulling joint venture has been to establish an initial reserve exceeding one million ounces gold, so that production may be fast-tracked to commence in 2013.

#### Objective of current resources drilling program - to establish maiden reserve

The feasibility study resource drilling program at the Bullabulling Gold project commenced in late November 2010, targeting the 2.3km long zone between Bacchus and Phoenix pits to increase and upgrade the current Inferred Mineral Resource estimated in August 2010 (Figure 2). The drilling program was planned to focus on infilling the existing drilling, assessing and confirming the quality of the historic drilling through twinning of existing drillholes (QAQC), and testing the mineralised zones below the current base of the resource (at 120m depth approximately), including historic high grade intersections beneath the Bacchus North pit (Figure 2). The main aim of the drilling is to compare results from the historic assay database, with the aim of improving the confidence in the historical assays to allow the current inferred resource to be reclassified to indicated and measured categories, and in turn enable a maiden JORC compliant reserve to be estimated for the project. The current reported JORC compliant mineral resource is 41,517,000 tonnes at 1.48 g/t Au (or 1.98 million ounces contained gold) at a 0.7 g/t Au cut off to a depth of 315m RL, approximately 120m below surface.



| Mineral<br>Resource<br>estimate | Cut Off (g/t<br>Au) | Class    | Tonnes     | Gold<br>grade g/t | Contained<br>Ounces |
|---------------------------------|---------------------|----------|------------|-------------------|---------------------|
| August 2010                     | 0.7                 | Inferred | 41,517,000 | 1.5               | 1,982,000           |
|                                 |                     |          |            |                   |                     |

#### **Bullabulling Mineral Resource (August 2010)**

Note: The resource is quoted for blocks with a grade of greater than 0.7 g/t and above the 315 RL which approximates to 120m depth below surface. Differences may occur due to rounding.

The drill strategy, prepared by Auzex and agreed by the Joint Venture, was to start drilling on the Bacchus Deeps mineralisation followed by a program of QAQC infill holes into the Titan area on sections between 75m and 150m apart, into the Phoenix area on sections 100m apart, into Bacchus East initially on 400m sections and holes in the Bonecrusher prospect (at the northern end of the Bullabulling Trend) to allow validation of the historic drill database in these areas (Figure 2). The total number of metres planned to complete first and second pass drilling at Bacchus Deeps, Priority QAQC on Titan, Phoenix and Bacchus East, drill out of the Bacchus South floor and preliminary drilling at Bonecrusher was 17,495m in 128 drillholes. The agreed resource drilling program was completed just after Christmas and an additional 7,600m was added to infill new mineralisation not contained in the current resource.

## Drilling work

All the planned resource drilling has now been completed with total drill production to date 30,854m from 227 holes since the program commenced, including pre-collars for metallurgical diamond drill holes. Since the last quarterly, there has been 15,575 metres drilled in 105 holes to 01 April 2011 (Table 1). Drilling during the period focussed on in-fill drilling new mineralisation found at Titan and Bacchus East, and testing of historical mineralisation south and north of Phoenix, Bacchus South and reconnaissance drilling at Bonecrusher, which is located at the northern end of the Bullabulling mineralised trend (Figure 2).

## **Drilling results**

Drilling results continue to improve the confidence in the current resource model and consequently the historic data that were used to estimate the resource model. Importantly a number of new zones of mineralisation continue to be intersected outside the resource model both below and along strike from known mineralisation (Table 2). New intersections not reported previously include 1m at 23.80 g/t Au from 34m in BJ0118, 47m at 0.74 g/t Au from 39m in BJ0120, 7m at 1.68 g/t Au from 73m in BJ0120, 9m at 1.67 g/t Au from 0m in BJ0134,



3m at 9.33 g/t Au from 158m in BJ0136, 34m at 0.65 g/t Au from 138m in BJ0143, 6m at 1.52 g/t Au from 108m in BJ0144, 3m at 3.57 g/t Au from 77m in BJ0153, 2m at 8.41 g/t Au from 94m in BJ0154, 1m at 11.75 g/t Au from 128m in BJ0159, 1m at 12.05 g/t Au from 62m in BJ0160, 4m at 2.98 g/t Au from 172m in BJ0160, 1m at 8.02 g/t Au from 134m in BJ0164, 2m at 7.62 g/t Au from 47m in BJ0165, 5m at 1.79 g/t Au from 130m in BJ0165, 4m at 2.97 g/t Au from 146m in BJ0166, 3m at 6.77 g/t Au from 155m in BJ0172, 2m at 5.03 g/t Au from 115m in BJ0176, 1m at 8.31 g/t Au from 44m in BJ0179, 7m at 24.46 g/t Au from 36m, including 1m at 164 g/t Au from 38 m, in BJ0180, 1m at 8.10 g/t Au from 76m in BJ0180, 1m at 7.08 g/t Au from 47m in BJ0184, 2m at 8.69 g/t Au from 80m in BJ0184, 4m at 1.81 g/t Au from 69m in BJ0187, 6m at 2.47 g/t Au from 72m in BJ0189, 5m at 1.90 g/t Au from 44m in BJ0190, 2m at 5.54 g/t Au from 75m in BJ0201, 3m at 3.80 g/t Au from 90m in BJ0201, 3m at 6.12 g/t Au from 98m in BJ0202, 3m at 12.42 g/t Au from 106m in BJ0203, 6m at 1.67 g/t Au from 113m in BJ0203, 7m at 2.08 g/t Au from 76m in BJ0206, 5m at 7.59 g/t Au from 78m in BJ0207, 6m at 7.35 g/t Au from 90m in BJ0208, 2m at 13.29 g/t Au from 29m in BJ0210 and 3m at 3.17 g/t Au from 112m in BJ0214.

All the new holes drilled have intersected mineralisation that is similar in grade and widths to the historic drilling (Table 2). Of particular importance were the results from Bonecrusher that confirmed similar mineralisation five kilometres along strike from the main resource area (Figure 2). Bonecrusher has the potential to add to the resource base of the project as the footwall lodes found to the south have not been tested in this area. As in the previously announced holes, there are four intersections per hole relating to the multiple stacked lodes defined by the structural mapping. Approximately 78% of these intersections returned similar or better grades or widths of mineralisation to the resource model and 22% are worse or did not intersect mineralisation predicted by the resource model. Approximately 22% of the reported intersections have returned gold mineralisation outside the current resource model, as previously reported to 315 RL or approximately 120m below surface, which will add to the current resource base of the project.

An example of the reconciliation of the QAQC drilling with the current resource estimate is shown on the attached section (Figure 1). All the drill holes on the section were drilled after the resource model was completed, and intersected mineralisation as predicted by the resource model in drill holes BJ0203, BJ0202, BJ0180 and BJ0179. The mineralisation in BJ0201 and BJ0177 is of a similar width and grade as predicted by the model but slightly offset. The high grade intersection in BJ0180 of 19m at 9.49 g/t Au including 1m at 164 g/t Au is a new intersection not predicted by the model.



#### Auzex proposed drilling program

A total of 194,158m of new drilling has been planned from 1,210 drill holes to an average depth of 160m to follow up on the QAQC drilling (Figure 3). This drilling will infill resources to the north, south and at depth, and will also include exploration drilling to define the footwall and hanging-wall contacts of the mineralised trend. Exploration drilling is also planned at depth to test for repetitions of the stacked lodes at depth that may have better continuity of high grade mineralisation. Discussions have taken place regarding the use CSIRO's HyLogging technology to map in detail the various alteration assemblages associated with the gold mineralisation at Bullabulling. CSIRO have agreed to carry out a pilot project logging two holes at Bullabulling to determine if the technique provides useful information.

#### **Resource estimation**

The geological consultants continued to work on the new resource and reserve estimate and have been continuously reviewing drilling results as they become available in relation to QAQC and drill spacing requirements. A review of the standards, blanks and duplicate samples to date has also been completed with no issues identified. A new preliminary model has been developed, using a MIK estimation technique that reconciles well with known historic production and the current resource estimate. The modelling parameters and technique have now been signed off, with the advantage of using a MIK approach that rerunning the model to include new data will be quick and simple. Also the MIK technique is a recognised standard estimation technique used by the industry and will be acceptable for feasibility sign off. A full estimate will be completed next quarter with a JORC compliant reportable resource available in the June Quarterly. Optimisation parameters have also been complied, which will include the estimated processing and capital costs from the metallurgical testwork, to allow a first pass optimisation to be completed to assess the future requirements to meet the one million ounce target.

#### Metallurgy test work

Auzex's consultant metallurgical engineers are currently reviewing the new metallurgical comminution, recovery and variability testwork data and have started modelling potential processing and plant capital costs, assuming a base case plant capacity of 5.0 mtpa. Preliminary crushing, mill and plant design work will also be carried out. This information will then be used to optimise plant throughput, and define operating and capital costs for the planned reserve estimation.



#### Future work plan

Work is continuing as planned with the following work expected to be completed in the coming months:

- Sign off on processing costs.
- Receipt of all assay results from the resource drilling.
- Development of a preliminary resource estimate.
- Sign off on capital costs.
- Resource estimation.
- Approval of Program of Works for 194,000m of drilling.
- Optimisation and reserve estimation.
- Start of next phase of drilling either exploration or infill drilling depending on results from the optimisation studies.
- Start of full feasibility study, including appointment of project manager and consultancy group to manage and sign off on the feasibility study

## New South Wales and North Queensland Projects, (Auzex 100%)

Planning for fieldwork on Auzex's New South Wales and North Queensland projects has been completed and budgets developed. Discussions have been started with an exploration services company to take over exploration of the Company's other exploration assets to allow Auzex to focus on fast tracking the Bullabulling project.

## Lyell gold project, NZ (Auzex 58%)

A drilling program has been approved by the Department of Conservation and drilling has commenced during the quarter. The program is designed to test a coincident gold-arsenic soil geochemical anomaly, which extends over a distance of 3000m with a width of 200m from the historic Alpine United gold mine. Historic production from the Alpine United mine, which is located in the southern portion of the anomalous soil geochemistry, was 96,500oz gold.

One hole has been completed to a depth of 127.1m in fractured greywacke with minor disseminated arsenopyrite and a second hole has reached a depth of 140.3m compared to a target depth of 150m in sulphide bearing quartz veins (Figure 4 and Figure 5). The second hole ARD2 intersected greywacke containing 5% quartz veins and up 1% disseminated pyrite and arsenopyrite in approximately equal amounts in both vein and wallrock between 89.0m – 121.0m, including 90m to 98.0m with up to 20% quartz veins with strong limonite alteration after sulphide (Figure 4 and Figure 5). Total drill production is 267.4m for an



average production rate of 9.85m per day. The drill rate continues to vary from 5m/day in fractured greywacke with 0.5m runs up to 15m/day in consolidated greywacke with 1.5m runs. The mineralised intersection will be given priority for logging and delivery to the assay lab, with results available in May. The drill platform for ARD1 and ARD2 will be left in place to allow additional holes to be drilled from this position if followup drilling is undertaken. Four drill holes remain to be drilled from the planned program.

For further information please check our website (<u>www.auzex.com</u>) or contact John Lawton (Managing Director) or Gregor Partington (Operations Director) on +617 3333 2722 or +614 4870 0987 respectively.

#### **Competent Person Statement**

The information in this report that relates to Exploration Results is based on information compiled by John Lawton who is a full-time employee of the Company and Member of The Australasian Institute of Mining and Metallurgy. He has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". The latest August 2010 Mineral Resource estimate was completed under the overall supervision and direction of Steven Hodgson, MAIG, of CSA Global who is a Competent Person as defined by the Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code 2004 Edition). John Lawton and Steven Hodgson consent to the inclusion in this report of the matters based on the information in the form and context in which it appears.

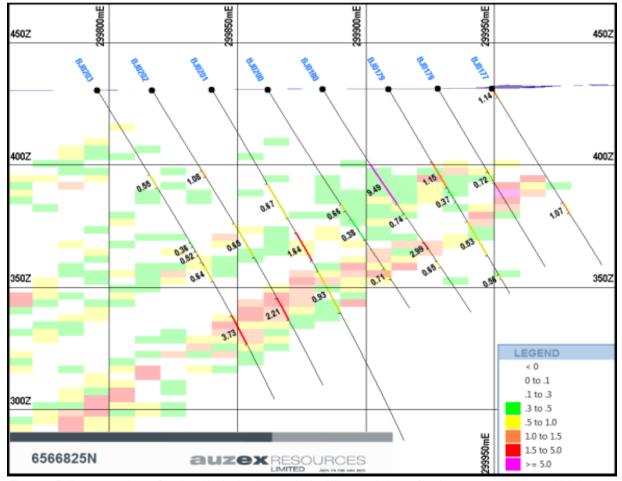



Figure 1: Drill cross section at Bacchus North showing results in drilling carried out after the resource estimate, which is shown as coloured blocks.



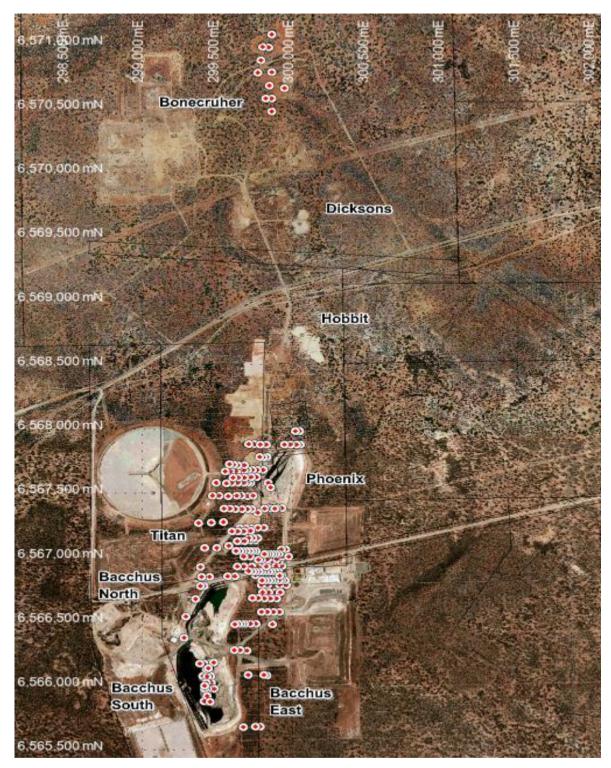



Figure 2: Drill plan showing the location of QAQC and infill drilling in the main resource areas and holes targeting the high grade mineralisation in the Bacchus Deeps area. Red filled drill collar symbols are completed holes.





Figure 3: Location of 194,000m of planned drilling at Bullabulling proposed and planned by Auzex in relation to completed resource infill drill holes.





Figure 4 ARD2 94.9m milky white quartz vein with cm-scale weathered and fresh sulphides



Figure 5 Banded pyrite in quartz vein from ARD2.



| e 1: Bulla | bulling Co | llar data for F | RC drillin | g con | pleted | l between | 01 February | and 01 April |
|------------|------------|-----------------|------------|-------|--------|-----------|-------------|--------------|
| Hole       | Easting    | Northing        | RL         | Dip   | AZ     | Length    | Date        | Comments     |
| BJ0116     | 299840.4   | 6570974.42      | 434.52     | -60   | 90     | 133       | 1/02/2011   | Mineralised  |
| BJ0117     | 299862.2   | 6571074.17      | 434.24     | -60   | 90     | 151       | 2/02/2011   | Mineralised  |
| BJ0118     | 299791     | 6570873.37      | 435.07     | -60   | 90     | 259       | 5/02/2011   | Mineralised  |
| BJ0119     | 299846.9   | 6570673.94      | 431.34     | -60   | 90     | 157       | 6/02/2011   | Mineralised  |
| BJ0120     | 299863     | 6570575.07      | 437.05     | -60   | 90     | 223       | 8/02/2011   | Mineralised  |
| BJ0126     | 299697.4   | 6566273.47      | 427.11     | -60   | 90     | 151       | 4/02/2011   | Mineralised  |
| BJ0130     | 299705.2   | 6566080.64      | 425.89     | -60   | 90     | 151       | 1/02/2011   | Mineralised  |
| BJ0131     | 299785.8   | 6565680.09      | 424.07     | -60   | 90     | 91        | 1/02/2011   | Mineralised  |
| BJ0132     | 299751.3   | 6565679.72      | 423.92     | -60   | 90     | 125       | 2/02/2011   | Mineralised  |
| BJ0133     | 299673.9   | 6565677.55      | 424.01     | -60   | 90     | 151       | 2/02/2011   | Mineralised  |
| BJ0134     | 299473.4   | 6566177.26      | 372.05     | -60   | 90     | 56        | 5/02/2011   | Mineralised  |
| BJ0135     | 299411.3   | 6566171.89      | 366.36     | -60   | 90     | 138       | 6/02/2011   | Mineralised  |
| BJ0136     | 299382.8   | 6566171.74      | 366.12     | -60   | 90     | 168       | 14/02/2011  | Mineralised  |
| BJ0137     | 299429.1   | 6566125.58      | 373.54     | -70   | 90     | 132       | 14/02/2011  | Mineralised  |
| BJ0138     | 299425.3   | 6566020.95      | 371.94     | -60   | 90     | 169       | 11/02/2011  | Mineralised  |
| BJ0139     | 299480.4   | 6565972.92      | 365.1      | -60   | 90     | 102       | 11/02/2011  | Mineralised  |
| BJ0140     | 299433.6   | 6565975.3       | 370.92     | -60   | 90     | 130       | 5/02/2011   | Mineralised  |
| BJ0141     | 299862.6   | 6570474.88      | 437.97     | -60   | 90     | 199       | 10/02/2011  | Mineralised  |
| BJ0142     | 299803.3   | 6570975.22      | 434.3      | -60   | 90     | 163       | 10/02/2011  | Mineralised  |
| BJ0143     | 299768.4   | 6570774.32      | 435.39     | -60   | 92     | 206       | 13/02/2011  | Mineralised  |
| BJ0144     | 299822.8   | 6570575.82      | 437.1      | -60   | 92     | 175       | 14/02/2011  | Mineralised  |
| BJ0145     | 299791.6   | 6566980.49      | 432.16     | -60   | 92     | 133       | 15/02/2011  | Mineralised  |
| BJ0146     | 299771.9   | 6566980.91      | 432.04     | -60   | 91.5   | 139       | 16/02/2011  | Mineralised  |
| BJ0147     | 299910.5   | 6567025.61      | 433.62     | -60   | 90     | 103       | 17/02/2011  | Mineralised  |
| BJ0148     | 299889.8   | 6567025.42      | 433.73     | -60   | 90     | 109       | 17/02/2011  | Mineralised  |
| BJ0149     | 299870.4   | 6567025.68      | 433.67     | -60   | 90     | 121       | 18/02/2011  | Mineralised  |
| BJ0150     | 299851.2   | 6567025.55      | 433.73     | -60   | 90     | 103       | 19/02/2011  | Mineralised  |
| BJ0151     | 299831.4   | 6567025.81      | 433.53     | -60   | 90     | 103       | 19/02/2011  | Mineralised  |
| BJ0152     | 299811.8   | 6567025.9       | 433.2      | -60   | 90     | 103       | 19/02/2011  | Mineralised  |
| BJ0153     | 299891     | 6566931.44      | 431.63     | -60   | 90     | 109       | 20/02/2011  | Mineralised  |
| BJ0154     | 299758.4   | 6567048.78      | 432.9      | -60   | 90     | 151       | 8/02/2011   | Mineralised  |
| BJ0155     | 299736.5   | 6567048.75      | 432.66     | -60   | 90     | 163       | 9/02/2011   | Mineralised  |
| BJ0156     | 299715.4   | 6567048.16      | 432.23     | -60   | 90     | 169       | 10/02/2011  | Mineralised  |
| BJ0157     | 299691.4   | 6567047.98      | 431.9      | -60   | 90     | 169       | 21/02/2011  | Mineralised  |
| BJ0158     | 299670     | 6567047.6       | 431.57     | -60   | 90     | 181       | 22/02/2011  | Mineralised  |
| BJ0159     | 299647.7   | 6567046.92      | 431.37     | -60   | 90     | 193       | 23/02/2011  | Mineralised  |
| BJ0160     | 299622.6   | 6567046.78      | 431.36     | -60   | 90     | 199       | 24/02/2011  | Mineralised  |
| BJ0161     | 299413.8   | 6565974.67      | 371.54     | -60   | 90     | 145       | 8/02/2011   | Mineralised  |
| BJ0162     | 299433     | 6565918.63      | 369.34     | -60   | 90     | 114       | 13/02/2011  | Mineralised  |
| BJ0163     | 299452     | 6565873.36      | 365.05     | -60   | 90     | 114       | 12/02/2011  | Mineralised  |
| BJ0164     | 299431.8   | 6565874.2       | 366.2      | -60   | 90     | 150       | 13/02/2011  | Mineralised  |
| BJ0165     | 299641.2   | 6566480.38      | 427.96     | -60   | 90     | 174       | 16/02/2011  | Mineralised  |
| BJ0166     | 299618.3   | 6566477.98      | 427.88     | -60   | 90     | 192       | 20/02/2011  | Mineralised  |

BJ0172

BJ0173

BJ0174

299613.3

299919.5

299881.5

6566274.43

6566725.83

6566725.75

430.28

430.81

430.35

-60

-60

-60

90

90

90

192

84

100



20/02/2011

20/02/2011

20/02/2011

Mineralised

Mineralised

Mineralised

| Hole   | Easting  | Northing   | RL     | Dip | AZ | Length | Date       | Comments    |
|--------|----------|------------|--------|-----|----|--------|------------|-------------|
| BJ0175 | 299841.7 | 6566726    | 430.13 | -60 | 90 | 120    | 22/01/2011 | Mineralised |
| BJ0176 | 299802.1 | 6566726.45 | 430.24 | -60 | 90 | 138    | 22/02/2011 | Mineralised |
| BJ0177 | 299949.3 | 6566819.23 | 431.26 | -60 | 90 | 84     | 23/02/2011 | Mineralised |
| BJ0178 | 299928.1 | 6566818.7  | 431.17 | -60 | 90 | 84     | 23/02/2011 | Mineralised |
| BJ0179 | 299908.9 | 6566817.86 | 430.88 | -60 | 90 | 96     | 23/02/2011 | Mineralised |
| BJ0180 | 299883.2 | 6566818.66 | 430.94 | -60 | 90 | 108    | 24/02/2011 | Mineralised |
| BJ0181 | 299680.2 | 6567125.71 | 432.9  | -60 | 90 | 139    | 25/02/2011 | Mineralised |
| BJ0182 | 299634.2 | 6567124.7  | 432.1  | -60 | 90 | 163    | 27/02/2011 | Mineralised |
| BJ0183 | 299720.2 | 6567204.22 | 434.36 | -60 | 90 | 109    | 27/02/2011 | Mineralised |
| BJ0184 | 299676   | 6567203.36 | 433.57 | -60 | 90 | 139    | 28/02/2011 | Mineralised |
| BJ0185 | 299638   | 6567202.5  | 433.08 | -60 | 90 | 163    | 1/03/2011  | Mineralised |
| BJ0186 | 299595.1 | 6567201.41 | 433.39 | -60 | 90 | 187    | 1/03/2011  | Mineralised |
| BJ0187 | 299760.6 | 6567622.85 | 441.45 | -60 | 90 | 103    | 3/03/2011  | Mineralised |
| BJ0188 | 299724.3 | 6567622.1  | 440.26 | -60 | 90 | 121    | 3/03/2011  | Mineralised |
| BJ0189 | 299681.3 | 6567621.29 | 441.17 | -60 | 90 | 139    | 4/03/2011  | Mineralised |
| BJ0190 | 299641.5 | 6567621.4  | 440.14 | -60 | 90 | 163    | 5/03/2011  | Mineralised |
| BJ0191 | 299603.1 | 6567620.43 | 438.57 | -60 | 90 | 181    | 6/03/2011  | Mineralised |
| BJ0192 | 299560.3 | 6567576.82 | 437.22 | -60 | 90 | 199    | 7/03/2011  | Pending     |
| BJ0193 | 299490   | 6567579.87 | 436.44 | -60 | 90 | 181    | 9/03/2011  | Pending     |
| BJ0194 | 299460.2 | 6567271.64 | 432.89 | -60 | 90 | 222    | 12/03/2011 | Pending     |
| BJ0195 | 299510.7 | 6567478    | 437    | -60 | 90 | 211    | 12/03/2011 | Pending     |
| BJ0196 | 299468.7 | 6567477.18 | 435.42 | -60 | 90 | 175    | 13/03/2011 | Pending     |
| BJ0197 | 299583.8 | 6567377.01 | 434.26 | -60 | 90 | 187    | 14/03/2011 | Pending     |
| BJ0198 | 299543   | 6567377    | 438    | -60 | 90 | 198    | 20/03/2011 | Pending     |
| BJ0199 | 299537.8 | 6567272.8  | 432.96 | -60 | 90 | 222    | 13/03/2011 | Pending     |
| BJ0200 | 299861.8 | 6566818.37 | 430.79 | -60 | 90 | 105    | 24/02/2011 | Mineralised |
| BJ0201 | 299840.1 | 6566818.47 | 430.76 | -60 | 90 | 162    | 26/02/2011 | Mineralised |
| BJ0202 | 299816.7 | 6566818.25 | 430.57 | -60 | 90 | 138    | 26/02/2011 | Mineralised |
| BJ0203 | 299795.4 | 6566817.89 | 430.51 | -60 | 90 | 144    | 27/02/2011 | Mineralised |
| BJ0205 | 299906   | 6566887.67 | 431.46 | -60 | 90 | 109    | 27/02/2011 | Mineralised |
| BJ0206 | 299884.3 | 6566887.72 | 431.35 | -60 | 90 | 114    | 28/02/2011 | Mineralised |
| BJ0207 | 299862.1 | 6566888    | 431.27 | -60 | 90 | 132    | 28/02/2011 | Mineralised |
| BJ0208 | 299841.3 | 6566888.17 | 431.19 | -60 | 90 | 138    | 1/03/2011  | Mineralised |
| BJ0209 | 299819   | 6566888.23 | 431.25 | -60 | 90 | 138    | 1/03/2011  | Mineralised |
| BJ0210 | 299795.8 | 6566888.5  | 431.16 | -60 | 90 | 144    | 2/03/2011  | Mineralised |
| BJ0211 | 299775.5 | 6566887.67 | 431.12 | -60 | 90 | 151    | 3/03/2011  | Mineralised |
| BJ0212 | 299753.9 | 6566888.95 | 431.21 | -60 | 90 | 162    | 4/03/2011  | Mineralised |
| BJ0213 | 299731.5 | 6566889.27 | 431.31 | -60 | 90 | 133    | 5/03/2011  | Mineralised |
| BJ0214 | 299710.2 | 6566889.53 | 430.98 | -60 | 90 | 152    | 6/03/2011  | Mineralised |
| BJ0215 | 299825.4 | 6566929.31 | 431.7  | -60 | 90 | 132    | 7/03/2011  | Mineralised |
| BJ0216 | 299577.7 | 6567087.59 | 431.66 | -60 | 90 | 222    | 8/03/2011  | Pending     |
| BJ0217 | 299493.9 | 6567073.7  | 432.84 | -60 | 90 | 204    | 10/03/2011 | Pending     |
| BJ0218 | 299415.3 | 6567073.3  | 432.99 | -60 | 90 | 222    | 11/03/2011 | Pending     |
| BJ0219 | 299375   | 6567265    | 434    | -60 | 90 | 156    | 14/03/2011 | Pending     |
| BJ0220 | 299360   | 6566175    | 365    | -60 | 90 | 156    | 29/03/2011 | Pending     |
| BJ0221 | 299410   | 6565925    | 369    | -60 | 90 | 144    | 30/03/2011 | Pending     |
| BJ0223 | 299914   | 6566575    | 432    | -60 | 90 | 72     | 20/03/2011 | Pending     |



| Hole   | Easting | Northing | RL  | Dip | AZ | Length | Date       | Comments |
|--------|---------|----------|-----|-----|----|--------|------------|----------|
| BJ0224 | 299874  | 6566575  | 432 | -60 | 90 | 96     | 21/03/2011 | Pending  |
| BJ0225 | 299834  | 6566575  | 432 | -60 | 90 | 120    | 21/03/2011 | Pending  |
| BJ0226 | 299794  | 6566575  | 432 | -60 | 90 | 150    | 22/03/2011 | Pending  |
| BJ0227 | 299764  | 6566575  | 432 | -60 | 90 | 162    | 22/03/2011 | Pending  |
| BJ0228 | 299864  | 6566475  | 428 | -60 | 90 | 102    | 23/03/2011 | Pending  |
| BJ0229 | 299824  | 6566475  | 428 | -60 | 90 | 222    | 24/03/2011 | Pending  |
| BJ0230 | 299822  | 6566375  | 429 | -60 | 90 | 90     | 25/03/2011 | Pending  |
| BJ0231 | 299782  | 6566375  | 429 | -60 | 90 | 108    | 26/03/2011 | Pending  |
| BJ0232 | 299742  | 6566375  | 429 | -60 | 90 | 126    | 26/03/2011 | Pending  |
| BJ0233 | 299702  | 6566375  | 429 | -60 | 90 | 150    | 27/03/2011 | Pending  |
| BJ0234 | 299662  | 6566375  | 429 | -60 | 90 | 186    | 27/03/2011 | Pending  |
| BJ0235 | 299446  | 6567580  | 436 | -60 | 90 | 258    | 31/03/2011 | Pending  |

| Table 2: Intersection summar | y from drill assay | /s received between ' | 1 Februar | y 2011 and 01 A | pril 2011 |
|------------------------------|--------------------|-----------------------|-----------|-----------------|-----------|

| Hole   | From | То  | Width | Au g/t | Includes                  |
|--------|------|-----|-------|--------|---------------------------|
| BJ0116 | 106  | 108 | 2     | 0.42   |                           |
| BJ0117 | 85   | 87  | 2     | 0.44   |                           |
| BJ0117 | 92   | 94  | 2     | 0.37   |                           |
| BJ0117 | 103  | 108 | 5     | 0.77   |                           |
| BJ0118 | 5    | 7   | 2     | 0.73   |                           |
| BJ0118 | 34   | 35  | 1     | 23.80  |                           |
| BJ0118 | 140  | 143 | 3     | 0.57   |                           |
| BJ0118 | 146  | 151 | 5     | 0.39   |                           |
| BJ0118 | 161  | 163 | 2     | 0.59   |                           |
| BJ0118 | 169  | 171 | 2     | 0.59   |                           |
| BJ0119 | 39   | 42  | 3     | 0.90   |                           |
| BJ0119 | 50   | 52  | 2     | 0.44   |                           |
| BJ0119 | 57   | 59  | 2     | 0.58   |                           |
| BJ0119 | 64   | 68  | 4     | 0.68   |                           |
| BJ0119 | 77   | 92  | 15    | 0.54   |                           |
| BJ0119 | 98   | 102 | 4     | 0.58   |                           |
| BJ0119 | 122  | 139 | 17    | 0.57   |                           |
| BJ0119 | 147  | 157 | 10    | 1.14   |                           |
| BJ0120 | 39   | 86  | 47    | 0.74   | 7m at 1.68 g/t Au from 73 |
| BJ0120 | 101  | 103 | 2     | 0.39   |                           |
| BJ0120 | 114  | 122 | 8     | 0.47   |                           |
| BJ0120 | 146  | 150 | 4     | 1.86   |                           |
| BJ0120 | 156  | 162 | 6     | 0.82   |                           |
| BJ0120 | 203  | 209 | 6     | 0.31   |                           |
| BJ0130 | 38   | 42  | 4     | 0.44   |                           |
| BJ0130 | 52   | 57  | 5     | 0.61   |                           |
| BJ0130 | 63   | 66  | 3     | 0.35   |                           |
| BJ0130 | 72   | 76  | 4     | 0.37   |                           |
| BJ0131 | 28   | 40  | 12    | 0.60   |                           |
| BJ0131 | 53   | 55  | 2     | 0.69   |                           |



| Hole   | From | То  | Width | Au g/t | Includes |
|--------|------|-----|-------|--------|----------|
| BJ0132 | 28   | 31  | 3     | 0.71   |          |
| BJ0132 | 43   | 46  | 3     | 0.34   |          |
| BJ0132 | 69   | 71  | 2     | 1.04   |          |
| BJ0133 | 36   | 42  | 6     | 0.49   |          |
| BJ0133 | 95   | 98  | 3     | 0.45   |          |
| BJ0134 | 0    | 9   | 9     | 1.67   |          |
| BJ0134 | 18   | 20  | 2     | 0.86   |          |
| BJ0135 | 5    | 7   | 2     | 0.79   |          |
| BJ0135 | 20   | 22  | 2     | 0.36   |          |
| BJ0135 | 32   | 35  | 3     | 0.41   |          |
| BJ0135 | 122  | 125 | 3     | 0.36   |          |
| BJ0136 | 3    | 5   | 2     | 0.42   |          |
| BJ0136 | 14   | 21  | 7     | 0.70   |          |
| BJ0136 | 42   | 55  | 13    | 0.43   |          |
| BJ0136 | 158  | 161 | 3     | 9.33   |          |
| BJ0137 | 19   | 22  | 3     | 0.95   |          |
| BJ0137 | 29   | 34  | 5     | 1.51   |          |
| BJ0137 | 47   | 52  | 5     | 0.50   |          |
| BJ0137 | 59   | 61  | 2     | 2.14   |          |
| BJ0137 | 64   | 66  | 2     | 0.56   |          |
| BJ0137 | 82   | 88  | 6     | 0.40   |          |
| BJ0138 | 124  | 126 | 2     | 0.63   |          |
| BJ0138 | 140  | 142 | 2     | 0.60   |          |
| BJ0139 | 30   | 40  | 10    | 0.59   |          |
| BJ0139 | 48   | 52  | 4     | 0.65   |          |
| BJ0140 | 0    | 14  | 14    | 0.77   |          |
| BJ0140 | 19   | 23  | 4     | 0.37   |          |
| BJ0140 | 33   | 46  | 13    | 0.75   |          |
| BJ0140 | 59   | 62  | 3     | 0.40   |          |
| BJ0141 | 47   | 61  | 14    | 0.78   |          |
| BJ0141 | 65   | 84  | 19    | 0.63   |          |
| BJ0141 | 99   | 101 | 2     | 0.55   |          |
| BJ0141 | 109  | 114 | 5     | 1.00   |          |
| BJ0141 | 150  | 152 | 2     | 1.65   |          |
| BJ0141 | 154  | 158 | 4     | 0.42   |          |
| BJ0142 | 6    | 8   | 2     | 0.43   |          |
| BJ0142 | 119  | 121 | 2     | 0.58   |          |
| BJ0143 | 94   | 96  | 2     | 0.48   |          |
| BJ0143 | 138  | 172 | 34    | 0.65   |          |
| BJ0143 | 180  | 183 | 3     | 0.47   |          |
| BJ0143 | 192  | 196 | 4     | 0.85   |          |
| BJ0144 | 108  | 114 | 6     | 1.52   |          |
| BJ0144 | 151  | 156 | 5     | 0.50   |          |
| BJ0145 | 31   | 35  | 4     | 0.37   |          |
| BJ0145 | 55   | 58  | 3     | 0.31   |          |
| BJ0145 | 89   | 93  | 4     | 1.18   |          |
| BJ0145 | 110  | 112 | 2     | 1.31   |          |



| Hole   | From | То  | Width | Au g/t | Includes                  |
|--------|------|-----|-------|--------|---------------------------|
| BJ0145 | 122  | 124 | 2     | 0.41   |                           |
| BJ0146 | 35   | 40  | 5     | 0.53   |                           |
| BJ0146 | 43   | 48  | 5     | 0.36   |                           |
| BJ0146 | 96   | 102 | 6     | 0.59   |                           |
| BJ0146 | 120  | 122 | 2     | 3.01   |                           |
| BJ0147 | 40   | 42  | 2     | 1.09   |                           |
| BJ0147 | 47   | 50  | 3     | 0.54   |                           |
| BJ0147 | 71   | 74  | 3     | 0.51   |                           |
| BJ0147 | 86   | 93  | 7     | 0.87   |                           |
| BJ0148 | 39   | 52  | 13    | 0.67   |                           |
| BJ0148 | 82   | 84  | 2     | 2.63   |                           |
| BJ0148 | 91   | 106 | 15    | 0.88   |                           |
| BJ0149 | 35   | 39  | 4     | 0.57   |                           |
| BJ0149 | 59   | 61  | 2     | 0.38   |                           |
| BJ0149 | 109  | 112 | 3     | 1.06   |                           |
| BJ0150 | 32   | 38  | 6     | 0.93   |                           |
| BJ0150 | 47   | 49  | 2     | 0.68   |                           |
| BJ0150 | 53   | 58  | 5     | 0.42   |                           |
| BJ0150 | 66   | 69  | 3     | 1.22   |                           |
| BJ0150 | 79   | 81  | 2     | 0.52   |                           |
| BJ0151 | 27   | 31  | 4     | 0.84   |                           |
| BJ0151 | 55   | 57  | 2     | 0.36   |                           |
| BJ0151 | 60   | 63  | 3     | 1.80   |                           |
| BJ0152 | 41   | 43  | 2     | 0.51   |                           |
| BJ0152 | 50   | 55  | 5     | 0.35   |                           |
| BJ0152 | 78   | 85  | 7     | 0.80   |                           |
| BJ0152 | 99   | 101 | 2     | 0.81   |                           |
| BJ0153 | 51   | 62  | 11    | 0.48   |                           |
| BJ0153 | 77   | 85  | 8     | 1.60   | 3m at 3.57 g/t Au from 77 |
| BJ0154 | 59   | 65  | 6     | 0.30   |                           |
| BJ0154 | 71   | 81  | 10    | 0.47   |                           |
| BJ0154 | 94   | 96  | 2     | 8.41   |                           |
| BJ0154 | 111  | 119 | 8     | 1.13   |                           |
| BJ0154 | 125  | 147 | 22    | 0.41   |                           |
| BJ0155 | 62   | 67  | 5     | 0.67   |                           |
| BJ0155 | 79   | 83  | 4     | 0.70   |                           |
| BJ0155 | 92   | 94  | 2     | 0.56   |                           |
| BJ0155 | 115  | 123 | 8     | 1.00   |                           |
| BJ0155 | 126  | 129 | 3     | 0.44   |                           |
| BJ0156 | 103  | 105 | 2     | 0.36   |                           |
| BJ0156 | 125  | 132 | 7     | 0.64   |                           |
| BJ0156 | 137  | 140 | 3     | 0.37   |                           |
| BJ0156 | 156  | 158 | 2     | 0.51   |                           |
| BJ0157 | 132  | 136 | 4     | 1.69   |                           |
| BJ0158 | 163  | 165 | 2     | 0.50   |                           |
| BJ0159 | 69   | 79  | 10    | 0.69   |                           |
| BJ0159 | 128  | 129 | 1     | 11.75  |                           |



| Hole   | From | То  | Width | Au g/t | Includes                   |
|--------|------|-----|-------|--------|----------------------------|
| BJ0160 | 62   | 67  | 5     | 2.55   | 1m at 12.05 g/t Au from 62 |
| BJ0160 | 74   | 82  | 8     | 1.01   |                            |
| BJ0160 | 128  | 132 | 4     | 1.02   |                            |
| BJ0160 | 154  | 160 | 6     | 0.56   |                            |
| BJ0160 | 169  | 176 | 7     | 1.97   | 4m at 2.98 g/t Au from 172 |
| BJ0160 | 181  | 184 | 3     | 0.78   |                            |
| BJ0161 | 4    | 15  | 11    | 0.75   |                            |
| BJ0161 | 21   | 35  | 14    | 0.41   |                            |
| BJ0161 | 40   | 46  | 6     | 0.81   |                            |
| BJ0161 | 53   | 56  | 3     | 0.70   |                            |
| BJ0161 | 59   | 61  | 2     | 0.69   |                            |
| BJ0161 | 63   | 65  | 2     | 0.50   |                            |
| BJ0161 | 69   | 74  | 5     | 0.77   |                            |
| BJ0161 | 142  | 145 | 3     | 0.86   |                            |
| BJ0162 | 1    | 15  | 14    | 0.83   |                            |
| BJ0162 | 23   | 26  | 3     | 0.44   |                            |
| BJ0162 | 54   | 67  | 13    | 0.49   |                            |
| BJ0162 | 82   | 86  | 4     | 0.91   |                            |
| BJ0162 | 91   | 93  | 2     | 0.48   |                            |
| BJ0163 | 0    | 4   | 4     | 0.47   |                            |
| BJ0163 | 38   | 40  | 2     | 0.63   |                            |
| BJ0164 | 12   | 14  | 2     | 1.91   |                            |
| BJ0164 | 25   | 30  | 5     | 0.86   |                            |
| BJ0164 | 45   | 47  | 2     | 0.47   |                            |
| BJ0164 | 79   | 82  | 3     | 0.53   |                            |
| BJ0164 | 134  | 135 | 1     | 8.02   |                            |
| BJ0165 | 45   | 54  | 9     | 1.93   | 2m at 7.62 g/t Au from 47  |
| BJ0165 | 55   | 60  | 5     | 0.38   |                            |
| BJ0165 | 77   | 81  | 4     | 0.34   |                            |
| BJ0165 | 88   | 93  | 5     | 0.30   |                            |
| BJ0165 | 115  | 117 | 2     | 0.53   |                            |
| BJ0165 | 120  | 124 | 4     | 0.73   |                            |
| BJ0165 | 130  | 140 | 10    | 1.31   | 5m at 1.79 g/t Au from 130 |
| BJ0166 | 40   | 42  | 2     | 0.94   |                            |
| BJ0166 | 62   | 66  | 4     | 0.34   |                            |
| BJ0166 | 85   | 87  | 2     | 0.46   |                            |
| BJ0166 | 93   | 100 | 7     | 1.23   |                            |
| BJ0166 | 119  | 123 | 4     | 0.59   |                            |
| BJ0166 | 135  | 154 | 19    | 1.27   | 4m at 2.97 g/t Au from 146 |
| BJ0172 | 68   | 71  | 3     | 0.71   |                            |
| BJ0172 | 95   | 105 | 10    | 0.64   |                            |
| BJ0172 | 155  | 158 | 3     | 6.77   |                            |
| BJ0173 | 42   | 44  | 2     | 0.40   |                            |
| BJ0173 | 81   | 83  | 2     | 3.09   |                            |
| BJ0174 | 54   | 57  | 3     | 2.39   |                            |
| BJ0174 | 88   | 90  | 2     | 0.60   |                            |
| BJ0176 | 45   | 53  | 8     | 0.62   |                            |



| Hole   | From | То  | Width | Au g/t | Includes                                               |
|--------|------|-----|-------|--------|--------------------------------------------------------|
| BJ0176 | 59   | 64  | 5     | 0.35   |                                                        |
| BJ0176 | 72   | 75  | 3     | 0.33   |                                                        |
| BJ0176 | 115  | 118 | 3     | 3.50   | 2m at 5.03 g/t Au from 115                             |
| BJ0177 | 0    | 4   | 4     | 1.14   |                                                        |
| BJ0177 | 54   | 59  | 5     | 1.07   |                                                        |
| BJ0178 | 39   | 44  | 5     | 0.72   |                                                        |
| BJ0179 | 34   | 46  | 12    | 1.15   | 1m at 8.31 g/t Au from 44                              |
| BJ0179 | 48   | 53  | 5     | 0.37   | -                                                      |
| BJ0179 | 62   | 78  | 16    | 0.53   |                                                        |
| BJ0179 | 87   | 89  | 2     | 0.56   |                                                        |
| BJ0180 | 36   | 55  | 19    | 9.49   | 1m at 164 g/t Au from 38<br>7m at 24.46 g/t Au from 36 |
| BJ0180 | 60   | 62  | 2     | 0.74   |                                                        |
| BJ0180 | 74   | 77  | 3     | 2.99   | 1m at 8.10 g/t Au from 76                              |
| BJ0180 | 83   | 86  | 3     | 0.65   |                                                        |
| BJ0181 | 24   | 28  | 4     | 0.48   |                                                        |
| BJ0181 | 50   | 65  | 15    | 0.85   |                                                        |
| BJ0181 | 82   | 85  | 3     | 0.59   |                                                        |
| BJ0181 | 93   | 98  | 5     | 0.59   |                                                        |
| BJ0181 | 108  | 110 | 2     | 0.41   |                                                        |
| BJ0181 | 115  | 117 | 2     | 0.42   |                                                        |
| BJ0181 | 127  | 129 | 2     | 0.80   |                                                        |
| BJ0182 | 58   | 68  | 10    | 0.89   |                                                        |
| BJ0182 | 105  | 107 | 2     | 2.78   |                                                        |
| BJ0182 | 113  | 118 | 5     | 0.60   |                                                        |
| BJ0183 | 32   | 45  | 13    | 1.15   |                                                        |
| BJ0183 | 93   | 95  | 2     | 0.61   |                                                        |
| BJ0184 | 35   | 37  | 2     | 0.46   |                                                        |
| BJ0184 | 38   | 41  | 3     | 0.37   |                                                        |
| BJ0184 | 46   | 48  | 2     | 3.86   | 1m at 7.08 g/t Au from 47                              |
| BJ0184 | 53   | 63  | 10    | 0.55   |                                                        |
| BJ0184 | 77   | 82  | 5     | 3.70   | 2m at 8.69 g/t Au from 80                              |
| BJ0184 | 87   | 90  | 3     | 0.39   |                                                        |
| BJ0184 | 93   | 102 | 9     | 1.15   |                                                        |
| BJ0184 | 114  | 117 | 3     | 0.67   |                                                        |
| BJ0184 | 124  | 126 | 2     | 0.38   |                                                        |
| BJ0185 | 63   | 71  | 8     | 0.62   |                                                        |
| BJ0185 | 87   | 97  | 10    | 1.08   |                                                        |
| BJ0185 | 100  | 106 | 6     | 0.50   |                                                        |
| BJ0185 | 129  | 145 | 16    | 0.47   |                                                        |
| BJ0186 | 76   | 81  | 5     | 0.46   |                                                        |
| BJ0186 | 100  | 102 | 2     | 0.51   |                                                        |
| BJ0186 | 148  | 161 | 13    | 0.76   |                                                        |
| BJ0187 | 33   | 50  | 17    | 0.56   |                                                        |
| BJ0187 | 69   | 73  | 4     | 1.81   |                                                        |
| BJ0188 | 28   | 30  | 2     | 0.32   |                                                        |
| BJ0188 | 43   | 49  | 6     | 0.90   |                                                        |



| Hole   | From | То  | Width | Au g/t | Includes                  |
|--------|------|-----|-------|--------|---------------------------|
| BJ0188 | 54   | 72  | 18    | 0.74   |                           |
| BJ0189 | 23   | 31  | 8     | 0.64   |                           |
| BJ0189 | 41   | 50  | 9     | 0.51   |                           |
| BJ0189 | 72   | 78  | 6     | 2.47   |                           |
| BJ0189 | 79   | 82  | 3     | 2.07   |                           |
| BJ0189 | 83   | 86  | 3     | 0.32   |                           |
| BJ0189 | 93   | 98  | 5     | 0.54   |                           |
| BJ0189 | 109  | 112 | 3     | 0.38   |                           |
| BJ0190 | 37   | 49  | 12    | 1.17   | 5m at 1.90 g/t Au from 44 |
| BJ0190 | 59   | 62  | 3     | 0.45   |                           |
| BJ0190 | 75   | 79  | 4     | 0.88   |                           |
| BJ0190 | 93   | 96  | 3     | 1.01   |                           |
| BJ0190 | 99   | 103 | 4     | 0.52   |                           |
| BJ0190 | 129  | 132 | 3     | 0.54   |                           |
| BJ0191 | 45   | 47  | 2     | 0.62   |                           |
| BJ0191 | 61   | 70  | 9     | 1.49   |                           |
| BJ0191 | 93   | 95  | 2     | 0.86   |                           |
| BJ0191 | 115  | 123 | 8     | 0.83   |                           |
| BJ0200 | 55   | 58  | 3     | 0.66   |                           |
| BJ0200 | 62   | 72  | 10    | 0.38   |                           |
| BJ0200 | 86   | 91  | 5     | 0.71   |                           |
| BJ0201 | 44   | 60  | 16    | 0.67   |                           |
| BJ0201 | 67   | 80  | 13    | 1.64   | 2m at 5.54 g/t Au from 75 |
| BJ0201 | 85   | 104 | 19    | 0.93   | 3m at 3.38 g/t Au from 90 |
| BJ0202 | 38   | 41  | 3     | 1.08   | 0,                        |
| BJ0202 | 63   | 79  | 16    | 0.65   |                           |
| BJ0202 | 98   | 108 | 10    | 2.21   | 3m at 6.12 g/t Au from 98 |
| BJ0203 | 40   | 46  | 6     | 0.55   | 0,                        |
| BJ0203 | 72   | 74  | 2     | 0.37   |                           |
| BJ0203 | 76   | 78  | 2     | 0.52   |                           |
| BJ0203 | 81   | 90  | 9     | 0.64   |                           |
| BJ0203 | 106  | 109 | 3     | 12.42  |                           |
| BJ0203 | 113  | 119 | 6     | 1.67   |                           |
| BJ0205 | 37   | 47  | 10    | 0.94   |                           |
| BJ0205 | 69   | 74  | 5     | 0.75   |                           |
| BJ0206 | 38   | 40  | 2     | 1.17   |                           |
| BJ0206 | 43   | 45  | 2     | 0.34   |                           |
| BJ0206 | 49   | 56  | 7     | 0.60   |                           |
| BJ0206 | 70   | 85  | 15    | 1.24   | 7m at 2.08 g/t Au from 76 |
| BJ0207 | 31   | 33  | 2     | 0.92   |                           |
| BJ0207 | 48   | 50  | 2     | 0.76   |                           |
| BJ0207 | 56   | 64  | 8     | 0.69   |                           |
| BJ0207 | 78   | 90  | 12    | 3.63   | 5m at 7.59 g/t Au from 78 |
| BJ0208 | 37   | 42  | 5     | 1.37   |                           |
| BJ0208 | 55   | 57  | 2     | 0.35   |                           |
| BJ0208 | 62   | 68  | 6     | 0.46   |                           |
| BJ0208 | 89   | 98  | 9     | 5.08   | 6m at 7.35 g/t Au from 90 |



| Hole   | From | То  | Width | Au g/t | Includes                   |
|--------|------|-----|-------|--------|----------------------------|
| BJ0209 | 23   | 25  | 2     | 0.35   |                            |
| BJ0209 | 47   | 49  | 2     | 1.32   |                            |
| BJ0209 | 78   | 83  | 5     | 0.66   |                            |
| BJ0209 | 94   | 105 | 11    | 1.25   |                            |
| BJ0210 | 29   | 32  | 3     | 9.00   | 2m at 13.29 g/t Au from 29 |
| BJ0210 | 44   | 48  | 4     | 0.35   |                            |
| BJ0210 | 56   | 58  | 2     | 0.39   |                            |
| BJ0210 | 66   | 68  | 2     | 0.42   |                            |
| BJ0210 | 71   | 73  | 2     | 0.81   |                            |
| BJ0210 | 83   | 92  | 9     | 0.42   |                            |
| BJ0210 | 102  | 104 | 2     | 0.80   |                            |
| BJ0211 | 30   | 41  | 11    | 1.11   |                            |
| BJ0211 | 46   | 48  | 2     | 0.39   |                            |
| BJ0211 | 62   | 67  | 5     | 0.40   |                            |
| BJ0211 | 90   | 95  | 5     | 1.01   |                            |
| BJ0211 | 110  | 115 | 5     | 0.31   |                            |
| BJ0211 | 123  | 127 | 4     | 1.03   |                            |
| BJ0213 | 46   | 49  | 3     | 0.38   |                            |
| BJ0213 | 54   | 60  | 6     | 0.84   |                            |
| BJ0213 | 83   | 85  | 2     | 0.94   |                            |
| BJ0213 | 96   | 98  | 2     | 1.31   |                            |
| BJ0213 | 105  | 111 | 6     | 1.08   |                            |
| BJ0213 | 116  | 118 | 2     | 0.42   |                            |
| BJ0213 | 125  | 127 | 2     | 0.61   |                            |
| BJ0214 | 2    | 5   | 3     | 1.00   |                            |
| BJ0214 | 44   | 46  | 2     | 0.44   |                            |
| BJ0214 | 52   | 58  | 6     | 0.30   |                            |
| BJ0214 | 65   | 67  | 2     | 1.74   |                            |
| BJ0214 | 112  | 115 | 3     | 3.17   |                            |
| BJ0214 | 119  | 123 | 4     | 0.54   |                            |
| BJ0214 | 146  | 149 | 3     | 0.39   |                            |
| BJ0215 | 32   | 38  | 6     | 0.66   |                            |
| BJ0215 | 49   | 53  | 4     | 0.48   |                            |
| BJ0215 | 71   | 78  | 7     | 0.52   |                            |
| BJ0215 | 89   | 91  | 2     | 1.11   |                            |
| BJ0215 | 98   | 102 | 4     | 0.36   |                            |

