Kingsgate Consolidated Limited

FRODUCTION						
Gold Produced						
30 Jun 2012	61,835 oz					
31 Mar 2012	60,614 oz					
30 Jun 2011	36,877 oz					
Total Cash Costs (i	nci. Royalty)					
30 Jun 2012	US\$744/oz					
31 Mar 2012	US\$744/oz					
30 Jun 2011	US\$850/oz					
Average Gold Price	e Received					
30 Jun 2012	US\$1,608/oz					
31 Mar 2012	US\$1,686/oz					
30 Jun 2011	US\$1,516/oz					
SECURITIES						
As at 30 June 2012	2					
Ordinary shares	151,263,789					
Unlisted options	6,229,334					

Senior geologist, Karen Hulme, inspects Challenger diamond drill core

Kingsgate Consolidated Limited ABN 42 000 837 472 Suite 801, Level 8, 14 Martin Place Sydney NSW 2000 Australia Telephone: 61 2 8256 4800 Facsimile: 61 2 8256 4810 Email: info@kingsgate.com.au Website: www.kingsgate.com.au

Gavin Thomas, MD & CEO 24 July 2012

KEY POINTS

QUARTERLY REPORT

for the three months ended

30 June 2012

- Record Group quarterly gold production of 61,835 ounces, up 2% on the March quarter, at a total cash cost of US\$744/ounce.
- Record annual gold production of 208,760 ounces up 85% from FY2011 at a total cash cost of US\$720/ounce.
- Strong operating performance at Chatree with gold production of 42,188 ounces up 9% on the March quarter.
- Challenger West ore body meets initial expectations with high grade visible gold. The main decline was successfully advanced across the '79 Fault.
- The Nueva Esperanza feasibility advances with metallurgical testing of Teterita ore and integrated mine plan progress.
- Resource drilling at Bowdens intersects ore grade silver outside the current resource.
- Field exploration work commenced in the Lao PDR following the signing of a concession agreement.

OPERATING SUMMARY										
)uarter 12		Quarter 112	Year To Date 2012					
Operation	Production (ounces)	Total Cash Costs (US\$/ounce)	Production (ounces)	Total Cash Costs (US\$/ounce)	Production (ounces)	Total Cash Costs (US\$/ounce)				
Chatree	42,188	625	38,721	626	121,372	618				
Challenger	19,647	1,000	21,893	955	87,388	862				
Total	61,835	744	60,614	744	208,760	720				

Diamond drilling on the Nueva Esperanza project, Chile

JUNE QUARTER OVERVIEW

Kingsgate achieved record total gold production of 61,835 ounces in the June quarter, an increase of 2% on the March quarter (60,614 ounces). Production continued to be strong at Chatree reflecting the impact of the higher grade ore at C North. At Challenger, production was impacted by low equipment availability and a gearbox failure in the main leach tank that was back on line by quarter end.

Group operating cash costs of US\$744/ounce were steady on the March quarter (US\$744/ounce).

Annual gold production was a record 208,760 ounces for Kingsgate, an increase of 85% on the year to June 2011 (113,134 ounces).

Gold sales in the quarter were 62,650 ounces at a gold price of US\$1,608/ounce.

OPERATIONS

CHATREE GOLD MINE

Chatree gold production of 42,188 ounces of gold in the June quarter was up 9% compared to the March quarter. Grade was 0.96 grams per tonne (g/t) due to accessing the higher grade ore at C North. Mining progressed well during the dry conditions and C North was completed late in the quarter and backfilling of the area has commenced.

Total cash costs were US\$625/ounce (including US\$162/ounce royalty). Cash costs were in-line with the March quarter US\$626/ounce, (including US\$167/ounce royalty) despite the higher production due to a lower by-product credit with the lower silver price. Total production costs after depreciation and amortisation were US\$776/ounce.

Chatree continues to demonstrate world's best practice for safety with 20.7 million man hours (+9 years) worked to June, 2012 since the last and only Lost Time Incident.

Plant Expansion

The final stages of commissioning and plant trials of the Chatree North Expansion Project were largely completed during the quarter. The warranty testing and completion guarantees associated with the EPC Contract were finished during June. The Ausenco personnel have now completed all tasks associated with the EPC Contract and the last payment to Ausenco was made at the end of the quarter. The plant optimisation is due for completion during the September quarter.

CHALLENGER GOLD MINE, SOUTH AUSTRALIA

Challenger quarterly gold production was 19,647 ounces. Production was impacted by low underground equipment availability early in the quarter, excessive stope dilution and a gearbox failure in the main leach tank in June. This was subsequently repaired by quarter end. The main decline advanced past the '79 Fault' by 58 metres and is back in competent ground conditions.

Performance of the Challenger West ore body has met initial expectations and continues to impress with significant visible gold observed in development headings. Development of a second Challenger West ore zone is currently being evaluated.

Total cash costs were US\$1,000/ounce (including US\$59/ounce royalty) mainly reflecting the lower production and compares to the March quarter costs of US\$955/ounce (including US\$62/ounce royalty).

Mine development capital expenditure for the quarter was \$8.7 million.

DEVELOPMENT PROJECTS

NUEVA ESPERANZA SILVER/GOLD PROJECT

Field operations at the Nueva Esperanza project reduced during the June quarter with the onset of winter with a small crew staying to continue mapping, surveying and sampling at Chimberos. Geotechnical work and metallurgical drilling were completed at Teterita and two diamond holes at Chimberos. Metallurgical testing on samples from Teterita has commenced in Perth.

The integrated mine plan for the startup of the Nueva Esperanza mine based on the Teterita and Arqueros Norte deposits is in progress.

Ausenco (Perth) has taken up the feasibility study and will take it through to the definitive feasibility level.

The process for environmental approvals is well advanced, with water drilling and pumping tests completed during the quarter.

Total feasibility and assessment expenditure for the quarter at Nueva Esperanza was A\$2.1 million.

BOWDENS SILVER PROJECT, NEW SOUTH WALES

The field program supporting the feasibility and environmental studies at Bowdens was ongoing during the quarter with a continuation of the drilling program and other surface work. Sterilisation drilling and additional metallurgical sampling were completed with the resource evaluation drilling expected to be completed in the current quarter. The resource model will be updated following the completion of the resource drilling.

Metallurgical testwork is underway with the program aimed at confirming key design parameters to be used for the definitive feasibility study (DFS) as well as reagent optimisation within the flotation process. With the current backlog at analytical laboratories, the metallurgical testing is now expected to be completed by the end of the September quarter.

The data and analysis from these programs will be included in both a preliminary EIS document and the bankable feasibility study which should be completed in the December quarter 2012.

Total feasibility and assessment expenditure for the quarter at Bowdens was A\$4.2 million.

CORPORATE

At the end of June Kingsgate had total cash and bullion/doré of A\$104.9 million, comprising cash of A\$92.2 million and bullion/doré of A\$12.7 million.

The balance of the Thai debt facility is approximately US\$85 million, following the first loan repayment of US\$15 million on 31 March 2012. The Kingsgate A\$50 million amortising corporate credit facility was drawn to A\$40 million. Under the terms of these loan facilities, the Group is required to maintain a minimum cash balance of A\$5 million in respect of its Australian operations and US\$15 million in respect of Akara. Cash and bullion/doré available to the Group after taking into account these restrictions totals A\$84.9 million.

In addition, Kingsgate has a five year A\$35 million convertible loan facility that provided funding for the Bowdens acquisition.

Total regional exploration expenditure for the Group over the quarter was A\$3.3 million.

OUTLOOK

Full year Group gold production for FY13 is currently expected to exceed Group gold production for FY12. Chatree will have the benefit of a full year at the higher throughput rate but grade will be lower due to the completion of the higher grade C North. Challenger is expected to perform in line with FY12.

Guidance for FY13 is planned to be released with the financial results on 30 August 2012.

View across Bowdens silver project

OPERATIONAL PERFORMANCE

Chatree Mine	Units	Jun 2012 Quarter	Mar 2012 Quarter	Dec 2011 Quarter	Sep 2011 Quarter	Year To Date 2012	% Change Qtr to Qtr
Waste Mined	bcm	1,342,703	1,392,806	1,580,021	1,943,133	6,258,662	(4)
Ore Mined	bcm	689,788	546,381	408,060	302,714	1,947,275	26
Waste to Ore Ratio		1.9 : 1	2.5 : 1	3.9 : 1	6.4 : 1	3.2 : 1	
Ore Mined	tonnes	1,777,300	1,404,485	1,053,566	750,822	4,986,173	27
Ore Treated	tonnes	1,615,472	1,557,419	1,278,564	664,265	5,115,720	4
Head Grade	Au g/t	0.96	0.94	0.82	0.81	0.90	2
neau Ulaue	Ag g/t	11.1	11.6	11.1	13.4	11.6	(4)
Gold Recovery	%	84.6	84.9	83.5	84.2	84.4	-
Gold Poured	ounces	42,188	38,721	26,035	14,428	121,372	9
Silver Poured	ounces	276,422	279,813	221,950	140,129	918,314	(1)
Challenger Mine	Units	Jun 2012 Quarter	Mar 2012 Quarter	Dec 2011 Quarter	Sep 2011 Quarter	Year To Date 2012	% Change Qtr to Qtr
Ore Mined	tonnes	147,644	158,867	150,281	149,867	606,659	(7)
Ore Treated	tonnes	164,206	170,801	165,719	143,903	644,629	(4)
Head Grade	Au g/t	4.04	4.32	5.43	4.41	4.55	(7)
Gold Recovery	%	92.2	92.2	93.2	91.9	92.4	-
Gold Poured	ounces	19,647	21,893	27,285	18,563	87,388	(10)
Silver Poured	ounces	1,214	1,180	1,348	1,230	4,971	3
Kingsgate Group	Units	Jun 2012 Quarter	Mar 2012 Quarter	Dec 2011 Quarter	Sep 2011 Quarter	Year To Date 2012	% Change Qtr to Qtr
Gold Poured	ounces	61,835	60,614	53,320	32,991	208,760	2
Silver Poured	ounces	277,636	280,993	223,298	141,359	923,285	(1)

CHATREE GOLD MINE, THAILAND

During the quarter mining accessed the higher grade areas in C North and mining continued in areas of A Pit. Ore mined was 1,777,300 tonnes at a strip ratio of 1.9:1 (previous quarter 2.5:1). Mine production was higher in the quarter due to the lack of rainfall, improved digger availability and improved blasting practices.

Mining at the higher grade C North progressed well during the dry conditions and the high grade ore was completely mined out in the quarter and positively impacted production.

Mining of A Pit continued to underpin production with lower volumes of high grade sourced from C North.

The process plant treated 1,615,472 tonnes of ore at an average plant head grade of 0.96g/t gold to produce 42,188 ounces of gold. Silver production was 276,422 ounces. Gold recovery of 84.6% was slightly lower than the prior quarter of 84.9%. Recovery is expected to improve over the next three to six months as new carbon inter-stage screens are installed.

Stockpiled ore at close of quarter was 8,363,447 tonnes at 0.63g/t containing 170,314 ounces of gold.

Chatree North Plant Expansion

The final stages of commissioning and plant trials of the Chatree North Expansion Project were largely completed during the quarter. The warranty testing and completion guarantees associated with the EPC Contract were finished during June. The Ausenco personnel have now completed all tasks associated with the EPC Contract and the last payment to Ausenco was made at the end of the quarter.

The plant optimisation, especially to improve throughput and recovery rates, is due for completion during the September quarter.

The construction of TSF#2 is nearing completion and is on time despite the adverse weather impacts during the entire construction period and will be ready for use during the September quarter.

The Chatree North Expansion Project will be completed once the TSF#2 project is finished and will be "on time and on budget" despite the cost escalation across the resource industry.

		OPERA	TING COST	S: CHATREE			
Cost Category	Units	June 2012 Quarter	March 2012 Quarter	December 2011 Quarter	September 2011 Quarter	Year To Date 2012	% Change Qtr to Qt
Direct Mining Expense	US\$/oz	629	663	689	742	666	(5)
Refining and Transport	US\$/oz	4	4	4	5	4	-
By Product Credit	US\$/oz	(170)	(208)	(225)	(310)	(210)	(18)
Cash Operating Cost	US\$/oz	463	459	468	437	460	1
Royalty	US\$/oz	162	167	135	171	158	(3)
Total Cash Cost	US\$/oz	625	626	603	608	618	-
Depreciation/Amortisation - Operating	US\$/oz	151*	154*	140*	93	143	(2)
Total Production Cost	US\$/oz	776	780	743	701	761	(1)
		OPERATI	NG COSTS:	CHALLENGE	2		
Cost Category *	Units	June 2012 Quarter	March 2012 Quarter	December 2011 Quarter	September 2011 Quarter	Year To Date 2012	% Change Qtr to Qt
Direct Mining Expense	US\$/oz	940	891	556	898	799	5
Refining and Transport	US\$/oz	3	4	3	4	3	(25)
By Product Credit	US\$/oz	(2)	(2)	(1)	(3)	(2)	-
Cash Operating Cost	US\$/oz	941	893	558	899	800	5
Royalty	US\$/oz	59	62	54	76	62	(5)
Total Cash Cost	US\$/oz	1,000	955	612	975	862	5
Depreciation/Amortisation - Acquisition	US\$/oz	179	184	166	128	165	(3)
Depreciation/Amortisation - Operating^	US\$/oz	481	397	297	326	370	21
Total Production Cost	US\$/oz	1,660	1,536	1,075	1,429	1,397	8
		OPERATING	COSTS: KIN	GSGATE GRO	OUP		
Cost Category *	Units	June 2012 Quarter	March 2012 Quarter	December 2011 Quarter	September 2011 Quarter	Year To Date 2012	% Change Qtr to Qt
Cash Operating Cost	US\$/oz	615	616	514	697	602	-
Royalty	US\$/oz	129	128	94	118	118	1
Total Cash Cost	US\$/oz	744	744	608	815	720	-
Depreciation/Amortisation - Acquisition	US\$/oz	57	66	85	72	69	(14)
Depreciation/Amortisation - Operating	US\$/oz	256	243	220	223	239	5
Total Production Cost	US\$/oz	1,057	1,053	913	1,110	1,028	-
Category	Units	June 2012 Quarter	March 2012 Quarter	December 2011 Quarter	September 2011 Quarter	Year To Date 2012	% Change Qtr to Qt
Av. Cash Gold Price Received	US\$/oz	1,608	1,686	1,680	1,699	1,663	(5)
Gold sold	Ounces	62,650	58,554	49,610	33,330	204,145	7
Silver sold	Ounces	276,983	281,378	205,321	131,282	894,964	(2)
Revenue from Metal Production	US\$M	108.7	107.7	89.8	61.6	367.8	1
Category	Units	June 2012 Quarter	March 2012 Quarter	December 2011 Quarter	September 2011 Quarter	Year To Date 2012	% Change Qtr to Qt

REGIONAL EXPLORATION - THAILAND

Exploration drilling, outside of the mining leases at Chatree, remains on hold until the new Special Prospecting Licence (SPL) applications and renewals are approved. The exploration team are currently working on adding value to the resource within our existing mining leases.

CHALLENGER GOLD MINE

Gold production at Challenger was 19,647 ounces. The June quarter performance was impacted by low underground equipment availability, poor primary ventilation at the bottom of the mine and excessive dilution in several stopes. Equipment availability issues are being addressed by the contractor and the primary ventilation issues will be resolved in the September quarter. The dilution issues were primarily due to localised poor geological conditions, however a review of stope design, drilling and blasting practices is currently under way.

Production was also impacted by a gearbox failure in the main leach tank agitator in June. Repairs were undertaken and it was back in operation by the end of June.

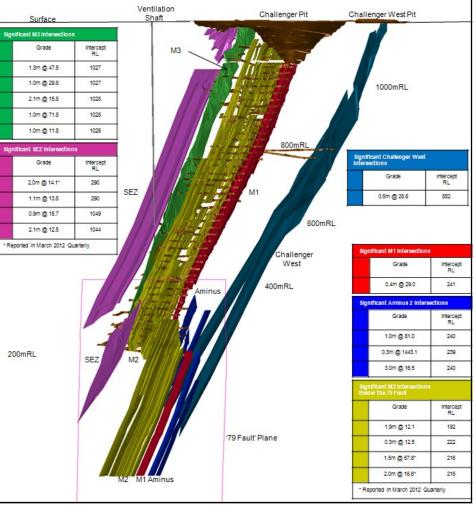
Mined ore grade reconciled at the mill achieved 4.04g/t gold during the quarter.

A total of 1,674 metres of development was carried out during the quarter, 12% below _____

target due to the operating issues outlined above. Operating development advance continued to establish Challenger West on the 790 and 205 levels and M1/M2 on the 215 and 195 levels. Capital development pushed through the main 79 Fault in the decline and established the 240 vent extension. Additional exploration development was undertaken on the 240 and 205 levels targeting extensions of the high grade Aminus lode with visible gold identified in a previously unidentified parallel Aminus lode. development of the The Challenger West 2 lode has also provided an impetus to develop this shoot on the 790 level.

Overall cash operating costs for the quarter were above budget mainly due to the higher expenditure in operating development that was delayed from the previous quarter. Total cash costs were US\$1,000/ounce (including royalties).

RESOURCE DEVELOPMENT


A total of 6,388 metres of development and exploration diamond drilling was carried out through the quarter. Mine development drilling focused on M2 on the East side of the fault. Additional drilling has also targeted Challenger West below the current resource and mining fronts, M1 footwall, Aminus and the new shoot, Aminus 2. This shoot lies within the Challenger West corridor and may prove to be a linking structure. It does not appear to be the same Challenger West as mined above but a possible related hanging wall feature. Significant gold intersections of 3 metres @ 16.5g/t and 0.34 metres at 1,443g/t on separate features were returned. Other drilling continues to target prospective zones such as the South East Zone (SEZ) and Shadow Zone which was mined previously.

The 800 level stope from Challenger West has performed in-line with expectations.

The predominant sources of production came from the 300 M2, 280 & 260 M1 & M2, 260 M1 & 260 Aminus, 700 M3 and 800 Challenger West.

SAFETY, ENVIRONMENT AND COMMUNITY

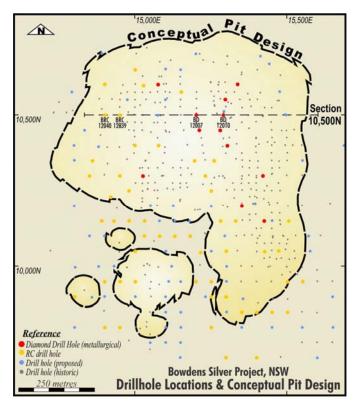
There were no Lost Time Injuries recorded during the quarter at Challenger with the site now 179 days without an LTI.

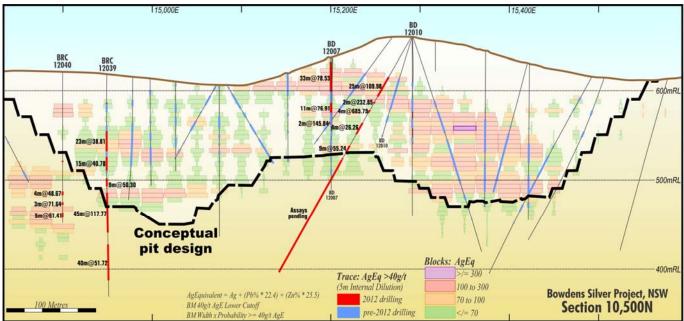
BOWDENS SILVER PROJECT

Field activities commenced at Bowdens in late January with the start of a drilling program. The program is designed to incorporate metallurgical sampling, resource definition drilling and sterilisation drilling to allow for the planning of mine-associated infrastructure.

Of the 132 RC drillholes planned for resource definition, 52 have been completed. Numerous encouraging intersections have been returned to date with several occurring outside the current resource model which has the potential to increase the current resource estimate. This is illustrated on the attached drill section 10,500mN with intersections in hole BRC12039 (45 metres @ 117.8 AgEq from 133 metres and 40 metres @ 51.7 AgEq from 191 metres) being below the existing resource model. (AgEq refers to silver equivalent values. See Appendix B). Similar encouraging intersections were reported in the previous quarter.

No significant results were returned from the 15 planned reserve circulation (RC) sterilisation holes.


An updated resource model will be completed following the completion of the current drilling program which is scheduled to conclude early September 2012.


Metallurgical testwork from the 12 diamond holes drilled in the first quarter is ongoing. The testwork includes flotation, comminution and mineralogical examinations and is aimed at confirming key design parameters being used for the current feasibility study, as well as reagent optimisation within the flotation process. The metallurgical testing is scheduled to be completed within the September quarter. Significant assay results are given in Appendix B.

Baseline monitoring of local noise, flora, fauna, surface water and groundwater is ongoing. Collected data will be included in the preliminary Environmental Impact Statement (EIS).

Diamond drilling on the Bowdens silver project, NSW

NUEVA ESPERANZA PROJECT

The quarter was marked by the onset of winter with some snow falling and a harsh drop in temperatures. Field activities have been reduced although a small crew is staying on to maintain mapping, surveying and sampling activity in the open pit of the Chimberos silver mine.

Geotechnical work and metallurgical drilling (480 metres) were completed at Teterita. Two diamond drillholes were completed at Chimberos for 505 metres, with results pending. Drilling at Chimberos will recommence in the spring. Eleven condemnation drill holes were also completed for 1,867 metres, on sites designated for the processing plant, waste dump and tailings dam. More condemnation drilling is planned for the spring.

Hydrology-related field activities such as geophysics (TEM lines) and drilling water bores and testing them was completed, with positive results.

Metallurgical testwork on samples from Teterita has commenced in Perth, Western Australia. These will complement the work already done for Arqueros in finalising technical specifications for the mill and leaching.

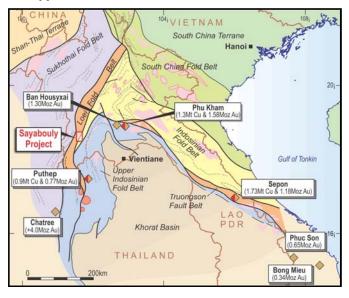
Feasibility Study

The integrated mine plan for the startup of the mine, based on the Teterita and Arqueros Norte silver deposits, is in progress with modeling of the Teterita pit complete.

Ausenco (Perth) have taken up the feasibility study with the objective of bringing it to definitive standards.

Environmental Licensing

The process for environmental approvals is well advanced, with water drilling and pumping tests as part of the Environmental Impact Assessment completed in the quarter.

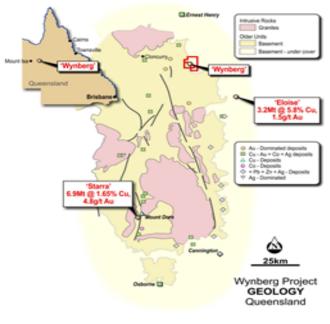

REGIONAL EXPLORATION

SAYABOULY PROJECT – LAO PDR

Kingsgate signed a Concession Agreement with the Lao People's Democratic Republic covering the Sayabouly Project around 150 kilometres north west of the capital Vientiane.

Field exploration is underway with surface sampling for geochemistry over an area of eight kilometres in strike and approximately one kilometre wide.

The area appears to be closely associated with a differentiated mafic-ultramafic intrusive and reconnaissance mapping suggests this intrusive extends for approximate 20 kilometres within the concession.


WYNBERG (100%)

Drilling during the quarter at Wynberg has enhanced the resource potential for the project, with the discovery of several new zones of mineralisation within the project area. Numerous gold intercepts were identified and detailed follow up drilling is required.

Significant intercepts include 23 metres @ 1.8g/t gold from 13 metres, 41 metres @ 1.6g/t gold from 60 metres and 3 metres @ 22.4g/t gold from 50 metres.

The results are currently being incorporated into a new resource estimate for Wynberg.

Wynberg Project, Queensland

1001	in lai	APPEN	IDIX A								
	CHALLEN	IGER RESOURCE	DEVELOPMENT D	RILLING							
	Underground Diamond Drilling - M1 Shoot										
Hole No.	From (m)	To (m)	Interval (m)	Au (g/t)	Midpoint (m RL)						
12CUD0999	40.51	40.88	0.37	28.97	241						
	Under	RGROUND DIAMOND	Drilling - M1 Foo	TWALL							
Hole No.	From (m)	To (m)	Interval (m)	Au (g/t)	Midpoint (m RL)						
12CUD0950	190.00	192.00	2.00	9.25	215						
12CUD0984	165.50	165.82	0.32	6.74	215						
	UNDERGRO	UND DIAMOND DRIL	ling - New 'Aminus	5 <mark>2′ Ѕн</mark> оот							
Hole No.	From (m)	To (m)	Interval (m)	Au (g/t)	Midpoint (m RL)						
12CUD0999	88.00	89.00	1.00	80.97	240						
12CUD1000	85.21	85.55	0.34	1443.07	239						
12CUD1005	100.00	103.00	3.00	16.54	240						
	Undergr	OUND SLUDGE DRILL	ing – New 'Aminus2	2' Shoot							
Hole No.	From (m)	To (m)	Interval (m)	Au (g/t)	Midpoint (m RL)						
12CUS11932	13.55	14.30	0.75	6.24	215						
12CUS11934	14.30	15.05	0.75	10.30	218						
12CUS11942	16.10	17.90	1.80	16.01	221						
	Und	ERGROUND DIAMON	d Drilling – M3 Sh	оот							
Hole No.	From (m)	To (m)	Interval (m)	Au (g/t)	Midpoint (m RL)						
12CUD0909	2.00	3.30	1.30	47.46	1027						
12CUD0910	3.00	4.00	1.00	29.78	1027						
12CUD0911	3.00	3.69	0.69	6.69	1028						
12CUD0913	3.00	5.14	2.14	15.80	1028						
12CUD0914	3.00	4.00	1.00	71.82	1028						
12CUD0917	2.00	3.00	1.00	11.75	1026						
	UND	ERGROUND DIAMONI	d Drilling – SEZ Sh	ЮОТ							
Hole No.	From (m)	To (m)	Interval (m)	Au (g/t)	Midpoint (m RL)						
11CUD0840	28.00	29.00	1.00	7.09	276						
12CUD0898	19.00	21.00	2.00	14.09	290*						
12CUD0903	74.00	75.08	1.08	13.83	290						
12CUD0913	72.10	73.00	0.90	15.70	1049						
12CUD0915	144.00	146.07	2.07	12.49	1044						
	Undergrou	IND DIAMOND DRILL	ING - CHALLENGER W	VEST SHOOT							
Hole No.	From (m)	To (m)	Interval (m)	Au (g/t)	Midpoint (m RL)						
12CUD0844	306.87	307.21	0.34	7.13	443						
12CUD0975	29.23	29.53	0.30	8.71	829						
12CUD0976	58.30	58.93	0.63	28.61	852						

CAC	A COLIC		APPENI	DIX B		1 and	No.			
BOWDENS RESOURCE DEFINITION DRILLING										
Hole No.	Local Coordinates (m)	Dip/ Azimuth (°)	Interval (m)	Width (m)	Ag Equivalent (AgEq)	Ag (ppm)	Pb (%)	Zn (%)		
		Bo	WDENS DIAMO	ond Drill	ING					
BD12001	10600N, 15075E	-90 / 0	4 - 11	7	121.08	107.97	0.26	0.29		
BD12002	10300N, 15025E	-90 / 0	<u>19 - 36</u> 6 - 73	17 67	164.90 67.38	<u>137.12</u> 54.28	0.79 0.15	0.40		
BD12002	10300N, 15420E	-60 / 303	15 - 111.6	96.6	93.69	84.21	0.18	0.30		
BD12005	10150N, 15425E	-60 / 300	10 - 62	52	142.27	126.19	0.22	0.44		
	1013014, 131232	00, 500	<u>71 - 81</u> 9 - 37	10 28	81.45 35.51	64.33 9.03	0.23 0.21	0.47		
BD12006	10200N, 15350E	-90 / 0	45 - 56	11	110.15	<u>9.03</u> 50.87	0.21	0.86		
BB12000	1020014, 199902	9070	75 - 80	5	29.21	7.82	0.26	0.61		
BD12007	10500N, 15200E	-90 / 0	5 - 38	33	78.53	61.02	0.25	0.46		
	1050014, 152002	,0,0	51 - 62	11	76.91	62.21	0.28	0.33		
BD12008	10450N, 15210E	-90 / 0	<u>4 - 16</u> 26 - 47	12 21	25.51 105.34	12.63 85.40	0.28	0.26		
			47.5 - 66	18.5	201.86	154.94	1.09	0.88		
BD12009	10450N, 15280E	-90 / 0	73 - 78	5	89.27	28.16	1.87	0.76		
DD12009	104JON, 1J200L	-90 / 0	84 - 93	9	93.76	32.76	1.65	0.94		
			<u>100 - 106</u> 50 - 75	6 25	79.41 109.98	24.68 91.48	1.98 0.26	0.41 0.50		
BD12010	10 10500N, 15290E	-60 / 271	110 - 124	14	26.26	17.64	0.20	0.30		
5512010		00/2/1	139 - 148	9	55.24	45.52	0.21	0.20		
	011 10EE0N 15206E		62 - 68	6	32.33	27.15	0.06	0.15		
		60 / 275	77 - 84	7	88.25	78.94	0.19	0.20		
BD12011	10550N, 15296E	-60 / 275	90 - 109 118 - 147	19 29	355.70 81.48	331.16 72.13	0.79 0.22	0.27		
			181 - 189.5	8.5	89.34	84.02	0.22	0.17		
BD12012	10600N, 15336E	-60 / 270	97 - 145	48	76.90	67.22	0.20	0.20		
			BOWDENS RC	Drilling						
			9 - 26	17	113.0	85.8	0.32	0.78		
			36 - 43	7	42.7	19.6	0.38	0.57		
			49 - 63	14	37.7	30.7	0.10	0.19		
BRC12018	10575N, 15150E	-90 / 0	71 - 78 90 - 98	7	185.2 43.8	170.9 31.3	0.30 0.23	0.30		
		-	112 - 130	18	49.8	38.7	0.23	0.29		
		·	165 - 178	13	106.7	92.0	0.27	0.34		
			192 - 220	28	67.0	51.8	0.32	0.32		
BRC12033	10150N, 15280E	-90 / 0	4 - 11	7	36.0	26.1	0.35	0.08		
BRC12034	10100N, 15080E	-90 / 0	<u>31 - 39</u> 52 - 57	8 5	62.7 87.2	34.2 71.9	1.06 0.30	0.18		
BRC12035	10150N, 15080E	-90 / 0	38 - 43	5	105.5	65.7	0.88	0.79		
BRC12036	10600N, 14900E	-90 / 0	186 - 196	10	37.6	16.1	0.53	0.38		
DRC12030	1000011, 149002	-90 / 0	207 - 215	8	115.3	95.6	0.30	0.51		
DDC12027	10640NL 150005	00 / 0	165 - 179	14	78.0	49.2	0.57	0.62		
BRC12037	10649N, 15000E	-90 / 0	186 - 202 209 - 215	16 6	277.9 53.2	252.4 28.1	1.01 0.45	0.11 0.59		
			23 - 30	7	563.0	524.8	1.21	0.44		
			43 - 54	11	40.9	30.4	0.17	0.26		
BRC12038	10596N, 15028E	-90 / 0	72 - 88	16	169.4	142.8	0.48	0.62		
		ŀ	99 - 107 116 - 170	8 54	56.8 72.6	29.3 48.8	0.34 0.60	0.78		
			64 - 87	23	36.6	48.8	0.60	0.41		
			93 - 108	15	40.8	14.3	0.32	0.69		
BRC12039	10500N, 14950E	-90 / 0	117 - 126	9	50.3	21.5	0.50	0.69		
			133 - 178	45	117.8	90.9	0.47	0.64		
PDC12040		00 / 0	191 - 231	40 5	56.6	40.0	0.22	0.46		
BRC12040 BRC12041	10500N, 14900E 9900N, 14800E	-90 / 0 -90 / 0	159 - 164 78 - 95	5 17	51.4 40.6	<u>30.0</u> 32.9	0.07	0.78		
BRC12041	9900N, 14800E	-90 / 0	50 - 58	8	40.0	32.9	0.03	0.20		
			26 - 32	6	79.5	73.0	0.04	0.21		
BRC12043	9950N, 14950E	-90 / 0	39 - 48	9	58.5	50.1	0.11	0.23		
BRC12044	9950N, 15000E	-90 / 0	54 - 63	9	36.1	34.5	0.02	0.04		
BRC12045	9850N, 15000E	-90 / 0	16 - 23	7	78.8	66.1	0.07	0.43		

Rounding of numbers may generate rounding errors.
 Recovery factors: Ag 81%, Pb 73% and Zn 83%.
 Price basis: Ag US\$28/oz, Pb US\$2,200/t and Zn US\$2,200/t.
 Bowdens silver equivalent equation: (AgEq) g/t = Ag ppm) + 22.4 x Pb (%) + 25.5 x Zn (%).
 It is the company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered.
 Cut-off grade for Bowdens is 30g/t AgEq.
 40g/t AgEq.
 40g/t AgEq.
 40g/t AgEq.

APPENDIX C

			WYNBE	RG RE	SOURCE	D	FINITION					
Hole No.	Co-ordinates (m)	Dip/ Azimuth (°)	Interval (m)	Width (m)	Gold Grade (g/t Au)		Hole No.	Co-ordinates (m)	Dip/ Azimuth (°)	Interval (m)	Width (m)	Gold Grade (g/t Au)
	WYNBERG	DIAMON	D DRILLING	5				Wynbi	ERG RC D	RILLING		
			11 - 12	1	2.5					29 - 30	1	1.9
			29 - 32	3	22.4			7704594.4N,		46 - 47	1	6.2
			36 - 38	2	2.6	1	12WYRC0019	473517.1E	-60/271	56 - 66	10	0.9
12WYDD0001	7704845.9N, 473532.8E	-60/267	45 - 64	19	0.8					71 – 72	1	1.0
			68 - 69	1	1.6					88 - 90	2	0.7
			73 - 86	13	1.1	1	12WYRC0020	77045464.2N, 473544.8E	-60/267	104 - 108	4	0.8
			96 - 97	1	2.7					113 - 115	2	1.4
12WYDD0002	7704625.3N,	-60/269	121 - 122	1	1.5	1	12WYRC0021	7704494.9N, 473333.4E	-60/90	121 - 123	2	2.1
1200100002	473329.7E	-00/209	21 - 25	4	7.0			473333.4L		3 - 6	3	1.0
12WYDD0003	7704654.4N,	-60/90	33 - 38	5	5.3					30 - 32	2	0.7
12000000	473280.5E	-00/90	48 - 51	3	2.4					45 - 51	6	1.0
12WYDD0004	770462.5N, 473185.1	-60/94	124 - 129	5	1.4	1	12WYRC0024	7704324.4N,	-60/90	69 - 70	1	1.2
								473143.5E		119 - 123	4	2.8
	WYNBI	RG RC D								127 - 131	4	0.6
	7704600.4N,	= 0 (0 0	13 - 36	23	1.8					151 - 153	2	1.1
12WYRC0005	473211.3	-59/90	48 - 60	12	1.5			7704562.8N,		26 - 27	1	1.2
			80 - 83	3	2.2	1	12WYRC0025	473401.6E	-60/90	70 – 71	1	1.1
12WYRC0008	7704419.1N, 473415.3E	-60/270	30 - 37 51 - 52	1	0.6 2.5					9 - 12	3	1.1
			0 - 1	1	1.1	1	2WYRC0027	7704370.5N, 473320.3E	-60/270	125 - 127	2	0.7
12WYRC0009	7704578.6N, 473236.9E	-57/90	13 - 21	8	3.5					131 - 137	6	3.9
			0 - 4	4	4.6			7704971.6N,	60/00	87 - 90	3	1.4
12WYRC0010	7704491.2N,	-60/270	54 - 59	5	0.9		12WYRC0029	473544.8E	-60/90	108 - 110	2	2.0
121111111100110	473482.3E	00,270	68 - 69	1	8.0	1	12WYRC0030	7704803.5N, 473733.5E	-60 /270	87 - 89	2	0.6
12WYRC0011	7704674.7N, 473421E	-60/278	36 - 37	1	1.5	1	12WYRC0031	7704826.7N, 473409.6E	-60/90	4 - 5	1	1.1
12WYRC0012	7704766.2N, 473473.3E	-60/270	23 - 29	6	0.7			7704856.2N.	-60/270	5 - 46	41	1.6
	4/34/3.3E		62 - 71	9	3.2	1	12WYRC0032	473819E	incl	40 - 46	6	4.7
			78 - 79	9 1	1.6					68 - 71	3	0.9
12WYRC0013	7704901.4N, 473467.2E	-60/90	83 - 98	15	1.8	1	12WYRC0037	7704910.5N, 473607E	-60/274	83 - 87	4	1.1
			103 - 111	8	1.4			473007E		100 - 106	6	1.3
12WYRC0014	7704463.4N,	-60/90	98 - 104	6	3.3	1	12WYRC0038	7705273.7N, 473870.6E	-60/90	65 - 73	8	0.7
	473362.5E		123 - 124	1	1.2					65 - 67	2	0.7
12WYRC0015	7704513N, 473452.5E	-60/270	70 - 80	10	0.7	1	12WYRC0040	7705227.2N,	-60/91	139 - 143	4	2.3
			31 - 34	3	0.6			473849.2E	50, 51	147 - 148	1	2.0
12WYRC0016	7704528.3N, 473290.6E	-60/90	49 - 50	1	1.9	╞						
			126 - 131	5	0.6					24 - 27	3	0.9
			26 - 27	1	1.1	1	I 2WYRC0041	7705162.1N,	-60/241	37 - 38	1	2.4
12WYRC0018	7704289.7N,	-60/270	54 - 74	20	0.9			47394.8E		51 - 53	2	1.0
	473252.3E	,	92 - 94	2	1.0					68 - 72	4	2.2
			102 - 120	18	1.1		Wynbe	erg Intercepts +0	.5g/t Au, in	RC and Dian	nond Dril	ling

KINGSGATE CONSOLIDATED LIMITED

BOARD OF DIRECTORS

Ross Smyth-Kirk Chairman

Gavin Thomas Managing Director and Chief Executive Officer Peter Alexander

Non-Executive Director

Craig Carracher Non-Executive Director

Peter McAleer

Non-Executive Director

COMPANY SECRETARY

Ross Coyle

SENIOR MANAGEMENT TEAM

Duane Woodbury Chief Financial Officer

Tim Benfield Chief Operating Officer

Ross Coyle General Manager Finance and Administration

Joel Forwood General Manager Corporate & Markets

Ron James General Manager, Exploration & Resources Development

Phil MacIntyre Chief Operating Officer & General Manager, Akara Mining Limited

Pakorn Sukhum Chief Executive Officer, Akara Mining Limited

REGISTERED OFFICE

Kingsgate Consolidated Limited

Suite 801, Level 8, 14 Martin Place Sydney NSW 2000, Australia Phone: (61 2) 8256 4800 Facsimile: (61 2) 8256 4810 Email: info@kingsgate.com.au Website: www.kingsgate.com.au

EXCHANGE LISTING

ASX:KCN

QUARTERLY SHARE PRICE ACTIVITY

QUARTER	Нідн	Low	LAST
June 2006	\$6.80	\$3.74	\$5.14
September 2006	\$5.39	\$4.15	\$4.59
December 2006	\$4.65	\$3.65	\$4.20
March 2007	\$4.94	\$3.47	\$4.75
June 2007	\$6.06	\$4.57	\$5.55
September 2007	\$5.70	\$4.06	\$5.37
December 2007	\$5.74	\$3.87	\$4.65
March 2008	\$5.41	\$3.34	\$4.40
June 2008	\$5.69	\$3.69	\$5.23
September 2008	\$6.30	\$3.78	\$4.64
December 2008	\$4.85	\$2.20	\$3.54
March 2009	\$5.38	\$3.20	\$5.22
June 2009	\$7.11	\$4.93	\$6.70
September 2009	\$8.39	\$6.26	\$8.14
December 2009	\$10.30	\$7.30	\$9.21
March 2010	\$10.00	\$8.30	\$8.51
June 2010	\$10.86	\$8.14	\$9.47
September 2010	\$12.22	\$9.18	\$11.60
December 2010	\$12.15	\$10.00	\$10.88
March 2011	\$10.81	\$7.45	\$8.69
June 2011	\$9.06	\$7.08	\$8.00
September 2011	\$9.39	\$6.73	\$7.18
December 2011	\$7.97	\$5.69	\$5.70
March 2012	\$8.04	\$5.99	\$6.40
June 2012	\$5.91	\$4.85	\$4.85

SHARE REGISTRY

Security Transfer Registrars Pty Ltd

770 Canning Highway, Applecross, WA 6153 Australia. PO Box 535, Applecross, WA 6953 Australia. Phone: (61 8) 9315 2333 Facsimile: (61 8) 9315 2233 Email: registrar@securitytransfer.com.au Please direct all shareholding enquiries to the share registry.

ISSUED SHARE CAPITAL

Kingsgate has 151,263,789 ordinary shares on issue and 6,229,334 unlisted options.

COMPETENT PERSONS STATEMENTS

In this report, information concerning Thailand operations relates to Exploration Results, Mineral Resources and Ore Reserve estimates based on information compiled by the following Competent Persons: Ron James, Guy Davies, Fiona Davidson and Suphanit Suphananthi who are employees of the Kingsgate Group and members of The Australasian Institute of Mining and Metallurgy. These people qualify as Competent Persons as defined in the Australasian code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code, 2004 edition) and possess relevant experience in relation to the mineralisation of being reported herein as Exploration Results, Mineral resources and Ore reserves. Each Competent Person has consented to the Public reporting of these statements and the inclusion of the material in the form and context in which it appears.

In this report, the information concerning Challenger operations that relates to Exploration Results, Mineral Resources and Ore Reserves estimates based on information compiled by Tony Poustie and Andrew Giles who are full-time employees of the Kingsgate Group. Tony Poustie is a member of The Australasian Institute of Mining and Metallurgy and Andrew Giles is a member of the Australian Institute of Geoscientists. These persons have sufficient experience that is relevant to the mineralisation and type of deposit under consideration and to the activity that they are undertaking to qualify as Competent Persons as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Tony Poustie and Andrew Giles consent to the inclusion in the report of the matters based on their information in the form in which it appears.

The information in this report that relates to Bowdens and Laguna Resources Mineral Resource estimation is based on work completed by Jonathon Abbott who is a full-time employee of Hellman & Schofield Pty Ltd and a member of the Australasian Institute of Mining and Metallurgy. Mr Abbott has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Abbott consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to data quality, comments on the resource estimates and economic potential of the estimated resources for Bowdens and Laguna Resources is based on information compiled by Ron James who is a member of the Australasian Institute of Mining and Metallurgy. Mr James has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'.