

Diabetes - Neurodegenerative Diseases - Cell Encapsulation

Microencapsulated Neonatal Porcine Islet Implants without Immune Suppression Alleviate Unaware Hypoglycaemia

Professor R. B. Elliott on behalf of Living Cell Technologies

Insulin Treatment

The Golden Goals of insulin treatment of diabetes are:

- Avoidance of episodes of hyper or hypoglycaemia (and as a corollary maximising time spent with normoglycaemia)
- 2) Reducing long term complications
- 3) Normalizing lifestyle

Allo-transplantation with immune suppression can sometimes attain goal 1) and perhaps 2) but <u>never</u> 3)

Type 1 Diabetes Treatment

"Best Yet" non-transplant long term results

- Insulin pumps +
- Continuous blood glucose monitoring

Recent Data (averages after 6 months)HbA1c- 0.2%Hours / day with hypoglycaemia- 0.9hrHours / day with hyperglycaemia- NS

DIABECELL Phase 2 NZ Clinical Trial

- Results of NZ Phase 2 clinical trial of microencapsulated neonatal porcine islets implanted into the peritoneal cavity via laparoscope
- Dose escalation (5,000-20,000 islets /Kg) as one dose
- Trial subjects: 14 Type 1 diabetics with severe unaware hypoglycaemia

DIABECELL Encapsulated Islets

Specifications of DIABECELL

Product Specification	Acceptance Criteria
DIABECELL [®] (encapsulated islets)	
% Viability	<u>></u> 85%
Maximal Insulin Release	<u>></u> 39μU/100 IEQ/h
Insulin Stimulation Index 1	<u>></u> 3
Insulin Stimulation Index 2	<u>></u> 3
	600-900 um
Capsule Size	diameter
	<u>></u> 90% are <u>+</u> 100 mm
Capsule Uniformity	of mean diameter
Capsule Integrity	<u>></u> 90%
% Capsules with Islets	<u>></u> 70%
	No growth after 14
In-process Sterility	days
Final DIABECELL [®] Product Sterility	
	No growth after 14
Bacteriology and Mycology	days
Mycoplasma	Negative
Endotoxin level	<1 EU/mL

Current NZ Trial

Patient #1: Asymptomatic Hypos

Current NZ Trial

Parameter		Post-Tx		
		Up to Week 12	Up to Week 12-52	
Insulin Dose (Weekly Average)	41	36	30	
Hypo Score (Weekly Average - Severity Indicator)	20	12	8	
Number of Unaware Hypos (Weekly Average)	3.2	1.5	0.8	
HbA1c (%)	7.5	7.5	7.6	

CGMS

Lack of dose effect on amelioration of hypoglycaemic events

Parameter		10,000/kg	15,000/kg	20,000/kg
Hypo Score: Weekly Average – Severity Indicator (Percentage Change from Baseline)	Pre-Tx	20	14	30
	Week 0-12	12 (40%)	11 (21%)	19 (37%)
	Week 13-52	7 (65%)		
Number of Unaware Hypos : Weekly Average (Percentage Change from Baseline)	Pre-Tx	3.7	2.3	5
	Week 0-12	1.6 (57%)	1.5 (35%)	3 (40%)
	Week 13-52	0.8 (78%)		

Effects of dose escalation of encapsulated islets on diabetic status

Dose	Group Size	% non-diabetic 100 days post tx			
Alloxan diabetic rabbits					
10,000 IEQ/kg	N=17	53%			
50,000 IEQ kg	N=17	6%			
0	N=8	0%			
Diabetic NOD mice					
10,000 IEQ/kg	N=36	28%			
50,000 IEQ kg	N=12	0%			
0	N=5	0%			

Responses to hypoglycaemia of adrenalin and glucagon compared to pre-transplantation

Responses to hypoglycaemia of adrenalin and glucagon compared to pre-transplantation

Week 24 Post-Tx

Summary

Transplantation of encapsulated porcine islets markedly improves adrenalin (and glucagon) response to hypoglycaemia, which may account for the improvement in both hypoglycaemia severity and unaware hypoglycaemia.

Speculation...

This may in part be due to islet neutrophin secretion.

HPLC Elution of Insulin Standards

Insulin in post HPLC Eluates

Conclusion

Despite minimal insulin dose reduction and improvement in HbA1c, severe and unaware hypoglycaemia was much reduced by a single dose of encapsulated islets with no dose response seen.

This study was supported in part by the Juvenile Diabetes Research Foundation International.

